精英家教网 > 初中数学 > 题目详情

【题目】反比例函数(a>0,a为常数)和在第一象限内的图象如图所示,点M在的图象上,MC⊥x轴于点C,交的图象于点A;MD⊥y轴于点D,交的图象于点B,当点M在的图象上运动时,以下结论:

①S△ODB=S△OCA

②四边形OAMB的面积不变;

③当点A是MC的中点时,则点B是MD的中点.

其中正确结论的个数是(

A.0 B.1 C.2 D.3

【答案】D

【解析】

试题分析:①由于A、B在同一反比例函数图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;

②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;

③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元

(1)设租用甲种货车x辆(x为非负整数),试填写表格.

表一:

表二:

(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.

(1)如图1,当P在线段AC上时,求证:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?(填“成立”或“不成立”)
(3)在(2)的条件下,当∠DBA=度时,存在AQ=2BD,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.

(1)k的值是

(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若,则b的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A1,A2,…,An均在直线上,点B1,B2,…,Bn均在双曲线上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若,则a2015=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育馆计划从一家体育用品商品一次性购买若干个排球和篮球(每个排球的价格都相同,每个篮球的价格都相同),双方洽谈的信息如下:
信息一:购买1个排球和2个篮球共需210元;
信息二:购买2个排球和3个篮球共需340元;
信息三:购买排球和篮球共50个,总费用不超过3200元,且购买排球的个数少于30个.
(1)每个排球和每个篮球的价格各是多少元?
(2)该体育馆有几种购买方案?应选择哪种购买方案可使总费用最低?最低费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 OD 是∠AOB 的角平分线,C 为 OD 上一点.

(1)过点 C 画直线 CE∥OB,交 OA 于 E;过点 C 画直线 CF∥OA,交 OB 于 F;过点 C 画线段 CG⊥OA,垂足为 G.
(2)根据画图回答问题:
①线段的长度就是点C到OA的距离;
②比较大小:CECG(填“>”或“=”或“<”);
③通过度量比较∠AOD与∠ECO的关系是:∠AOD∠ECO(填“>”或“=”或“<”);

查看答案和解析>>

同步练习册答案