精英家教网 > 初中数学 > 题目详情
如图,在□ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABF≌△CDF;
(2)当四边形AECF为菱形时,求□ABCD的面积.
(1).证明见解析;(2). 2.

试题分析:第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.
第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.
试题解析:(1)证明:∵在?ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=BC,AF=DF=AD,
∴BE=DF.
∴△ABE≌△CDF.
(2)解:∵四边形AECF为菱形时,
∴AE=EC.
又∵点E是边BC的中点,
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=BC=BE,
∴AB=BE=AE,即△ABE为等边三角形,
?ABCD的BC边上的高为2×sin60°=
∴菱形AECF的面积为2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.
(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.
                
图1
(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.
                   
图2               
(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.
  
图3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、C、D、B四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN,与AC交于点D,与BC交于点E,连接AE.

(1)∠ADE=       °;
(2)AE       CE(填“>、<、=”)
(3)当AB=3、AC=5时,△ABE的周长是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ADE为等边三角形,向两方延长DE,使得BD=DE=EC.连接AB、AC得△ABC,则∠BAC=         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(   )
(A)2      (B)8        (C)2      (D)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为(  )
 
A.30° B.36° C.40° D.45°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为(  )
A.2B.2.4C.2.6D.3

查看答案和解析>>

同步练习册答案