精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为(  )
 
A.30° B.36° C.40° D.45°
B

试题分析:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质.  ∵∠BAD=2∠CAD=2∠B=2∠C  ∵AB=AC,∴∠B=∠C
∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,
∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,
∴∠B=36°故选:B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读下面材料:
小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.
小明研究发现:如图2,拼接的大正方形的边长为, “日”字形的对角线长都为,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.
请你参考小明的画法,完成下列问题:
(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图
(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为,则八角形纸板的边长为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABF≌△CDF;
(2)当四边形AECF为菱形时,求□ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.
(1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点 F,且AC=8,tan∠BDC=
 
(1)求⊙O的半径长;
(2)求线段CF长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为(  )
A.△CDE与△ABF的周长都等于10cm,但面积不一定相等
B.△CDE与△ABF全等,且周长都为10cm
C.△CDE与△ABF全等,且周长都为5cm
D.△CDE与△ABF全等,但它们的周长和面积都不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为( )
A.18 cmB.22 cmC.24 cmD.26 cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/ 秒的速度向终点B移动,点Q以1厘米/ 秒的速度向D移动,当有一点到达终点时,另一点也停止运动。设运动的时间为t ,问:
(1)当t=1秒时,四边形BCQP面积是多少?
(2)当t为何值时,点P和点Q距离是3cm?
(3)当t=     时, 以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)

查看答案和解析>>

同步练习册答案