精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,
(1)若此抛物线经过点B(2,﹣ ),且与x轴相交于点E,F.
①填空:b=(用含a的代数式表示);
(2)若a= ,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.

【答案】
(1)[ "﹣2a﹣1
②当EF2的值最小时,求抛物线的解析式;
解:由①可得抛物线解析式为y=ax2﹣(2a+1)x+
令y=0可得ax2﹣(2a+1)x+ =0,
∵△=(2a+1)2﹣4a× =4a2﹣2a+1=4(a﹣ 2+ >0,
∴方程有两个不相等的实数根,设为x1、x2
∴x1+x2= ,x1x2=
∴EF2=(x1﹣x22=(x1+x22﹣4x1x2= =( ﹣1)2+3,
∴当a=1时,EF2有最小值,即EF有最小值,
∴抛物线解析式为y=x2﹣3x+ (2)

解:当a= 时,抛物线解析式为y= x2+bx+

∴抛物线对称轴为x=﹣b,

∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,

当x=0时,y= ,当x=1时,y= +b+ =2+b,当x=﹣b时,y= (﹣b)2+b(﹣b)+ =﹣ b2+

①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;

②当|﹣ b2+ |=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,

综上可知b的值为1或﹣5


【解析】解:(1.)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0, ),
∴c=
∵抛物线经过点B(2,﹣ ),
∴﹣ =4a+2b+
∴b=﹣2a﹣1,
所以答案是:﹣2a﹣1;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.
(1)求证:MH为⊙O的切线.
(2)若MH= ,tan∠ABC= ,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧 的中点,AC与BD交于点E.
(1)求证:DC2=CEAC;
(2)若AE=2,EC=1,求证:△AOD是正三角形;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AFGF=28时,请直接写出CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y= 在同一平面直角坐标系中的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案