精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中,∠ABC的平分线交AD于点E,∠BED的平分线交DC于点F,若AB=6,点F恰为DC的中点,则BC=(结果保留根号)

【答案】3+3
【解析】解:延长EF和BC,交于点G,如图所示: ∵矩形ABCD中,∠B的角平分线BE与AD交于点E,
∴∠ABE=∠AEB=45°,
∴AB=AE=6,
∴等腰直角△ABE中,BE= =6
又∵∠BED的角平分线EF与DC交于点F,
∴∠BEG=∠DEF
∵AD∥BC
∴∠G=∠DEF
∴∠BEG=∠G
∴BG=BE=6
∵∠G=∠DEF,∠EFD=∠GFC,
∴△EFD∽△GFC
=1,
∴CG=DE,
设CG=DE=x,则AD=6+x=BC,
∵BG=BC+CG,
∴6 =6+x+x,
解得:x=3 ﹣3
∴BC=6+(3 ﹣3)=3+3
故答案为:3+3

先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的相等关系,并根据BG=BC+CG进行计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费设某户每月用水量为x吨,应收水费为y元.

设某户居民每月用水量为m,则应收水费为______用含m的代数式表示

设某户居民每月用水量为m,则应收水费为______用含m的代数式表示

若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和爸爸周末步行去游泳馆游冰,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.两人离家的距离y(米)与小明所走时间x(分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:

(1)小明出发   分钟后第一次与爸爸相遇;

(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;

(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;

(4)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自20141228日北京公交地铁调价以来,人们的出行成本发生了较大的变化. 小林根据新闻,将地铁和公交车的票价绘制成了如下两个表格。(说明:表格中“612公里指的是大于6公里,小于等于12公里,其他类似)

北京地铁新票价

里程范围

对应票价

06公里

3

612公里

4

1222公里

5

2232公里

6

32公里以上

每增加1元可再乘坐20公里

*持市政交通一卡通花费累计满一定金额后可打折

北京公交车新票价

里程范围

对应票价

010公里

2

1015公里

3

1520公里

4

20公里以上

每增加1元可再乘坐5公里

*持市政交通一卡通刷卡,普通卡打5折,

学生卡打2.5

根据以上信息回答下列问题:

小林办了一张市政交通一卡通学生卡,目前乘坐地铁没有折扣。

1)如果小林全程乘坐地铁的里程为14公里,用他的学生卡需要刷卡交费________元;

2)如果小林全程乘坐公交车的里程为16公里,用他的学生卡需要刷卡交________元;

3)小林用他的学生卡乘坐一段地铁后换乘公交车,两者累计里程为12公里。已知他乘坐地铁平均每公里花费0.4元,乘坐公交车平均每公里花费0.25元,此次行程共花费4.5元。请问小林乘坐地铁和公交车的里程分别是多少公里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与反比例函数的图像交于点和点.

(1)求一次函数和反比例函数的解析式;

(2)直接写出不等式的解集;

(3)若点A关于y轴的对称点为C,问是否在x下方存在一点D,使以点A、B、C、D为顶点的四边形是平行四边形.若存在,直接写出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为DAF平分∠CAB,交CD于点E,交CB于点F

(1)求证:CE=CF

(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示试猜想:BE′与CF有怎样的数量关系?请证明你的结论

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线分别交x轴、y轴于AB两点,点P是线段AB上的一动点,以P为圆心,r为半径画圆.

(1)若点P的横坐标为﹣3,当⊙Px轴相切时,则半径r ,此时⊙Py轴的位置关系是 .(直接写结果)

(2)若,当⊙P与坐标轴有且只有3个公共点时,求点P的坐标.

(3)如图2,当圆心PA重合,时,设点C为⊙P上的一个动点,连接OC,将线段OC绕点O顺时针旋转90°,得到线段OD,连接AD,求AD长的最值并直接写出对应的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小颖在教学楼四层楼上,每层楼高均为3米,测得目高1.5米,看到校园里的圆形花园最近点的俯角为60°,最远点的俯角为30°,请你帮小颖算出圆形花园的面积是多少平方米?(结果保留1位小数)

查看答案和解析>>

同步练习册答案