【题目】某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.
(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
【答案】(1)购买甲种花木40棵,乙种花木60棵;(2)当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.
【解析】
(1)设购买甲种花木x棵,乙种花木y棵,根据题意可以列出相应的二元一次方程组,解方程组求出x、y的值即可得答案;
(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,根据题意可以得到费用与甲种花木数量的函数关系式,然后根据购买乙种花木的数量不少于甲种花木的数量,可以得到购买甲种花木的数量的取值范围,再根据一次函数的性质即可解答本题.
(1)设购买甲种花木x棵,乙种花木y棵,
∵购买甲,乙两种花木共100棵,刚好用去7200元,
∴,
解得:,
答:购买甲种花木40棵,乙种花木60棵;
(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,
w=60a+80(100﹣a)=﹣20a+8000,
∵购买乙种花木的数量不少于甲种花木的数量,
∴a≤100﹣a,
解得,a≤50,
∵-20<0,
∴w随a的增大而减小,
∴当a=50时,w取得最小值,此时w=﹣20×50+8000=7000,100﹣a=50,
答:当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,若点和点关于轴对称,点和关于直线对称,则称点是点关于轴,直线的“二次对称点”.
(1)已知点,直线是经过且平行于轴的一条直线,则点的“二次对称点”的坐标为______;
(2)如图1,直线经过、,点的坐标为.
①点关于轴,直线的“二次对称点”的坐标为______;
②当点在轴上移动,请你在图1中画出它关于轴,直线的“二次对称点”的运动路径.
(3)如图2,是轴上的动点,线段经过点,且点点的坐标分别为,直线经过且与轴负半轴夹角为60°,在点的运动过程中,若线段上存在点,使得点是点关于轴,直线的“二次对称点”,且点在轴上,则点的纵坐标的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③3a+c>0;④3a+b>0.其中正确的结论有( )
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有2个红球(记为红1、红2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是 ;
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用画树状图或列表法求两次都摸到红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,∠BAC=30°,点C为等边△DEF的边DE的中点.
(1)如图1,当DE与BC在同一条直线上时,已知,求的值;
(2)如图2,当DE与AC在同一条直线上时,分别连接AF,BD,试判断BD和AF的位置关系并说明理由;
(3)如图3,当DE与△ABC的边均不在一条直线上时,分别连接AF,BD,求证:∠FAC=∠CBD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与正比例函数(为常数,且)的图像都经过.
(1)求点的坐标及正比例函数的表达式;
(2)利用函数图像比较和的大小并直接写出对应的的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com