【题目】二次函数y=ax2+bx+c(a≠0)的图象所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③3a+c>0;④3a+b>0.其中正确的结论有( )
A. ①② B. ①④ C. ①③④ D. ②③④
【答案】C
【解析】
由二次函数图象开口方向、对称轴的位置、图象与y轴交点的位置得到a、b、c的符号,即可判①;由图象可知,当x=0时,y<0,根据对称轴为x=1可得当x=2时,y<0,观察图象即可判定②;由图象可知,x=-1时,y>0,即可得a-b+c=0,根据对称轴- =1,可得b=-2a,代入即可判定③;由- =1可得2a+b=0,所以3a+b=2a+b+a=a>0,即可判定④.
由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,对称轴在y轴右侧,a、b异号,则b<0,所以abc>0,①正确;
②由图象可知,当x=0时,y<0,根据对称轴为x=1可得当x=2时,y<0,当x>2时,y值得符号不确定,∴②不正确;
③∵当x=-1时,y>0,
∴a-b+c=0,
∵- =1,
∴b=-2a,
∴a+2a+c>0,
∴3a+c>0,
∴③正确;
④∵- =1,
∴2a+b=0,
∴3a+b=2a+b+a=a>0,
∴④正确.
综上,正确的结论为①③④.
故选C.
科目:初中数学 来源: 题型:
【题目】若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如就是一个“中高数”.若十位上数字为,则从、、、、、中任选两个不同的数,与组成“中高数”的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线的解析式为,与轴、轴分别交于点、点,直线的解析式为,与轴、轴分别交于点、点,直线与交于点.
(1)求点的坐标;
(2)若直线上存在点,使得,请求出点的坐标;
(3)在轴右侧、点左侧有一条平行于轴的动直线,分别与,交于点,,轴上是否存在点,使为等腰直角三角形?若存在,请求出满足条件的所有点的坐标;若不存在;请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
(1)当抛物线过原点时,求实数 a 的值;
(2)①求抛物线的对称轴;
②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
(3)当 AB≤4 时,求实数 a 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:□ABCD的两边AB,AD的长是关于x的方程x2-mx+-=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么□ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求m的值与一次函数的解析式;
(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.
(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?
(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是( )
A.35B.C.25D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com