精英家教网 > 初中数学 > 题目详情
已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.
(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;
(2)在(1)的条件下,AM+AN=
2
2
AC;
(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM的面积.
分析:(1)由点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,根据角平分线的性质,可得PB=PC,又由PM=PN,利用HL,即可判定Rt△PBM≌Rt△PCN,则可证得结论;
(2)由角平分线的性质易证得AB=AC,又由AM+AN=AM+CN+AC=AM+BM+AC=AB+AC,即可证得结论;
(3)由AC:PC=2:1,PC=4,即可求得AC的长,又由S四边形ANPM=S△APN+S△APB+S△PBM=S△APN+S△APB+S△PCN=S△APC+S△APB,即可求得四边形ANPM的面积.
解答:解:(1)∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,
∴PB=PC,∠PBM=∠PCN=90°,
在Rt△PBM和Rt△PCN中,
PM=PN
PB=PC

∴Rt△PBM≌Rt△PCN(HL),
∴BM=CN;

(2)∵∠APB=90°-∠PAB,∠APC=90°-∠PAC,
∴∠APC=∠APB,
∵PB⊥AE,PC⊥AF,
∴PB=PC,
∴AM+AN=AM+CN+AC=AM+BM+AC=AB+AC=2AC;
故答案为:2;

(3)∵AC:PC=2:1,PC=4,
∴AC=8,
∴AB=AC=8,PB=PC=4,
∴S四边形ANPM=S△APN+S△APB+S△PBM=S△APN+S△APB+S△PCN=S△APC+S△APB=
1
2
AC•PC+
1
2
AB•PB=
1
2
×8×4+
1
2
×8×4=32.
点评:此题考查了角平分线的性质、全等三角形的判定与性质以及三角形的面积问题.此题难度适中,注意掌握数形结合思想与转化思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知正方形ABCD的边长为2,点E、F均在直线BD上,且∠EAF=135°,EB:DF=1:2.
(1)求CF;
(2)在直线BD上是否存在点P,使A、E、P三点围成的三角形是直角三角形?若存在求出EP的长,不存在请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为2
3
的等边三角形.点E、F分别在CB和BC的延长线上,且∠EAF=12O°,设BE=x,CF=y.
(1)求y与x的函数表达式,并求出自变量x的取值范围.
(2)当x为何值时,△ABE≌△FCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,四边形ABCD为菱形,点E、F分别是线段DC和BC延长线的点,AE与BC交于点M,AF与CD交于点N,且∠BAD=2∠EAF.
(1)当∠B=60°,如图1,求证:CE•CF=AB2
(2)当∠B=90°,如图2,则线段CE、CF、AB之间的数量关系是
2AB2=CE•CF
2AB2=CE•CF

(3)在(1)的条件下,若CM:CF=1:6,S 四边形AMCN=9
3
,求tan∠F的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.
(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;
(2)在(1)的条件下,AM+AN=______AC;
(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM的面积.

查看答案和解析>>

同步练习册答案