【题目】数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
【答案】(1)详见解析;(2)3.
【解析】
(1)根据正方形的性质,得△ADG≌△ABE,所以∠AGD=∠AEB. 延长EB交DG于点H.由图形及题意,得到∠DHE =90°,所以,.(2)根据正方形的性质等,先证明△ADG≌△ABE(SAS) ,得到DG=BE. 过点A作AM⊥DG交DG于点M.由题意,得AM=BD=1,再由勾股定理,得到GM=2,所以DG=DM+GM=1+2=3,最后得到BE=DG=3.
(1)四边形ABCD与四边形AEFG是正方形
∴AD=AB,∠DAG=∠BAE=90°,AG=AE
∴△ADG≌△ABE
∴∠AGD=∠AEB
如图1,延长EB交DG于点H
△ADG中 ∠AGD+∠ADG=90°
∴∠AEB+∠ADG=90°
△DEH中, ∠AEB+∠ADG+∠DHE=180°
∴∠DHE =90°
∴
(2)四边形ABCD与四边形AEFG是正方形
∴AD=AB, ∠DAB=∠GAE=90°,AG=AE
∴∠DAB+∠BAG=∠GAE+∠BAG
∴∠DAG=∠BAE
AD=AB, ∠DAG=∠BAE,AG=AE
∴△ADG≌△ABE(SAS)
∴DG=BE
如图2,过点A作AM⊥DG交DG于点M,
∠AMD=∠AMG=90°
BD是正方形ABCD的对角线
∴∠MDA=∠MDA=∠MAB=45°, BD=2
∴AM=BD=1
在Rt△AMG中,
∵
∴GM=2
∵DG=DM+GM=1+2=3
∴BE=DG=3
科目:初中数学 来源: 题型:
【题目】一直线上有A、B、C不同三地,甲、乙两人分别从A、B两地同时同向出发前往距离B地150米的C地,甲、乙两人距离B地的距离y(米)与行走试卷x(分)之间的关系图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速行走,且乙在加速后的速度是甲速度的4倍.
(1)乙加速之后的速度为 米/分;
(2)求当乙追上甲时两人与B地的距离;
(3)当甲出发 分钟时,两人相距10米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,分别计算甲、乙的平均成绩;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)
(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;
(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为 ;
(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 70 | 128 | 171 | 302 | 481 | 599 | 903 |
摸到白球的频率 | 0.75 | 0.64 | 0.57 | 0.604 | 0.601 | 0.599 | 0.602 |
(1)请估计:当n很大时,摸到白球的概率约为 .(精确到0.1)
(2)估算盒子里有白球 个.
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,那么可以推测出x最有可能是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=-x2+2x,有下列四个结论:①它的对称轴是直线x=1;②设y1=-+2x1,y2=-+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个三角板放在边长为1的正方形上,并使它的直角顶点在对角线上滑动,直角的一边始终经过点,另一边与射线相交于点.
(1)当点在边上时,过点作分别交,于点,,证明:;
(2)当点在线段的延长线上时,设、两点间的距离为,的长为.
①直接写出与之间的函数关系,并写出函数自变量的取值范围;
②能否为等腰三角形?如果能,直接写出相应的值;如果不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com