精英家教网 > 初中数学 > 题目详情
3.探究函数y=x+$\frac{4}{x}$的图象与性质
(1)函数y=x+$\frac{4}{x}$的自变量x的取值范围是x≠0;
(2)下列四个函数图象中,函数y=x+$\frac{4}{x}$的图象大致是C;

(3)对于函数y=x+$\frac{4}{x}$,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2.
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2.
【拓展应用】
(4)若函数y=$\frac{{x}^{2}+5x+4}{x}$,则y的取值范围是y≥7.

分析 (1)根据分母不能等于零,可以解答本题;
(2)根据函数解析式可以判断函数图象所在的位置,本题得以解决;
(3)根据题目中的解答过程可以将没写的补充完整;
(4)根据(3)的特点可以解答本题.

解答 解:(1)∵y=x+$\frac{4}{x}$,
∴x≠0,
故答案为:x≠0;
(2)∵y=x+$\frac{4}{x}$,
∴x>0时,y>0,
当x<0时,y<0,故选项B、D错误,
∵x≠0,∴选项A错误,
故选C;
(3)解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2,
故答案为:2,2;
(4)y=$\frac{{x}^{2}+5x+4}{x}$=x+5+$\frac{4}{x}$=(x+$\frac{4}{x}$)+5≥7,
故答案为:y≥7.

点评 本题考查二次函数的性质、一次函数图象上点的特征、二次函数的图象,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,矩形纸片ABCD中,AD=8,AB=6,现要在矩形纸片中剪出腰长为5的等腰三角形,使点A为等腰三角形一个顶点,一条腰在矩形的边上,要求画出3种不同的等腰三角形,并计算每一种三角形的周长(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在△ABC中,∠ACB=90°,O为边AB上的一点,以O为圆心,以OA为半径,作⊙O,交AB于点D,交AC于点E,交BC于点F,且点F恰好是ED的中点,连接DF.
(1)求证:BC是⊙O的切线;
(2)若⊙O的直径为10,AE=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)连接BT,若⊙O半径为1,AT=$\sqrt{3}$,求BT的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC在方格纸中,设单元格边长为1.
(1)请以点O为位似中心,相似比为2,在方格纸中将△ABC放大,画出放大后的图形△A′B′C′;
(2)直接写出△A′B′C′的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)化简:4a2+2(3ab-2a2)-(7ab-1).
(2)已知:(x+2)2+|y-1|=0,求2(xy2+x2y)-[2xy2-3(1-x2y)]-2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.李红的叔叔在郊区种菜,他家有一块L形菜地,要把L形菜地按如图所示的那样分成面积相等的两个梯形,种上不同的蔬菜.这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.
(1)请你算一算,李红的叔叔家的菜地面积共有多少?
(2)当a=20米,b=30米时,面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.△ABC中,AB=AC,以AC为直径作⊙O交BC于D,过D作⊙O的切线DE交AB于E,求证:
(1)DE⊥AB
(2)CD2=EB•AB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=12,c=16,下面四个式中错误的有(  )
①sinA=$\frac{5}{16}$;②cosA=$\frac{3}{4}$;③tanA=$\frac{5}{12}$;④sinB=$\frac{3}{4}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案