精英家教网 > 初中数学 > 题目详情
12.△ABC中,AB=AC,以AC为直径作⊙O交BC于D,过D作⊙O的切线DE交AB于E,求证:
(1)DE⊥AB
(2)CD2=EB•AB.

分析 (1)连接OD.由等腰三角形的性质得出∴∠B=∠ODC,求出OD∥AB,再由切线的性质得出DE⊥AB,即可得出结论;
(2)连接AD,由等腰三角形的性质得出BD=CD,证明△BDE∽△BAD,得出对应边成比例,即可得出结论.

解答 证明:(1)连接OD,如图1所示:
∵AB=AC,OD=OC,
∴∠B=∠C,∠ODC=∠C,
∴∠B=∠ODC,
∴OD∥AB,
∵DE是⊙O的切线,
∴OD⊥DE,
∴DE⊥AB;
(2)连接AD,如图2所示:
∵AC为⊙O的直径,
∴∠ADB=∠ADC=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵DE⊥AB,
∴∠DEB=90°=∠ADB,
又∵∠B=∠B,
∴△BDE∽△BAD,
∴BD:AB=EB:BD,
∴BD2=EB•AB,
∴CD2=EB•AB.

点评 本题主要考查的是圆周角定理、切线的性质、等腰三角形的性质和判定、三角形的内角和定理,掌握此类问题的辅助线的作法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.一座隧道的截面由抛物线和长方形组成,长方形的长为8m,宽为2m,隧道的最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的解析式.
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.探究函数y=x+$\frac{4}{x}$的图象与性质
(1)函数y=x+$\frac{4}{x}$的自变量x的取值范围是x≠0;
(2)下列四个函数图象中,函数y=x+$\frac{4}{x}$的图象大致是C;

(3)对于函数y=x+$\frac{4}{x}$,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2.
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2.
【拓展应用】
(4)若函数y=$\frac{{x}^{2}+5x+4}{x}$,则y的取值范围是y≥7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)(-48)+8-(-25)×(-6)
(2)-22+[(3+32)×2-(-4)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.一只不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4.小林先从布袋中随机抽取一个乒乓球(不放回),再从剩下的3个球中随机抽取第二个乒乓球.记两次取得乒乓球上的数字依次为a、b
(1)求a、b之积为奇数的概率.
(2)若c=5,求长为a、b、c的三条线段能围成三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.因式分解:
(1)5mx2-10mxy+5my2
(2)x2(a-1)+y2(1-a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.
(1)若∠AOE=20°,求∠FOC的度数;
(2)若∠AOB=88°,求∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.
求证:(1)△ACD≌△BCE.
(2)△PCQ为等边三角形.

查看答案和解析>>

同步练习册答案