分析 (1)由矩形ABCD中,△BCE沿BE折叠为△BFE,易得∠BFE=∠C=90°,∠ABF=∠DFE,则可证得:△ABF∽△DFE;
(2)由sin∠DFE=$\frac{1}{3}$,可得$\frac{DE}{EF}$=$\frac{1}{3}$,然后设DE=a,则EF=3a,DF=2$\sqrt{2}$a,由△ABF∽△DFE,则可求得FE:BF的值,继而求得答案.
解答 (1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=∠C=90°,
∴∠AFB+∠ABF=90°,
∵∠BFE=∠C=90°,
∴∠AFB+∠DFE=90°,
∴∠ABF=∠DFE,
∴△ABF∽△DFE;
(2)解:在Rt△DEF中,sin∠DFE=$\frac{DE}{EF}$=$\frac{1}{3}$,
设DE=a,则EF=3a,DF=2$\sqrt{2}$a,
∴CE=EF=3a,AB=CD=DE+CE=4a,
∵△ABF∽△DFE,
∴$\frac{FE}{BF}$=$\frac{DF}{AB}$=$\frac{2\sqrt{2}a}{4a}$=$\frac{\sqrt{2}}{2}$,
∴tan∠FBE=$\frac{FE}{BF}$=$\frac{\sqrt{2}}{2}$.
点评 此题考查了相似三角形的判定与性质、矩形的性质、折叠的性质以及三角函数等知识.注意掌握折叠前后图形的对应关系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2a}{5{a}^{2}}$ | B. | $\frac{a}{5{a}^{2}-2a}$ | C. | $\frac{a-2b}{a+b}$ | D. | $\frac{ab-{b}^{2}}{{a}^{2}-{b}^{2}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AB∥DE | B. | AC∥DE | C. | CE∥AB | D. | AD∥BE |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com