【题目】如图1,Rt△ACB 中,∠C=90°,点D在AC上,∠CBD=∠A,过A、D两点的圆的圆心O在AB上.
(1)利用直尺和圆规在图1中画出⊙O(不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);
(2)判断BD所在直线与(1)中所作的⊙O的位置关系,并证明你的结论;
(3)设⊙O交AB于点E,连接DE,过点E作EF⊥BC,F为垂足,若点D是线段AC的黄金分割点(即),如图2,试说明四边形DEFC是正方形.
【答案】(1)作图见解析;(2)BD与⊙O相切;(3)证明见解析.
【解析】试题分析:(1)如图1,作线段AD的垂直平分线交AB于O,然后以点O为圆心,OA为半径作圆;
(2)连接OD,如图1,利用∠A=∠ODA、∠CBD=∠A得到∠CBD=∠ODA,则可证明∠ODB=90°,然后根据切线的判定方法可判断BD为⊙O的切线;
(3)先证明△CDB∽△CBA得到CB2=CDCA,再根据黄金分割的定义得到AD2=CDAC,则AD=CB,接着证明△ADE≌△BCD得到DE=DC,易得四边形CDEF为矩形,然后根据正方形的判定方法可判断四边形DEFC是正方形.
试题解析:解:(1)如图1,⊙O为所作;
(2)BD与⊙O相切.理由如下:
连接OD,如图1,∵OA=OD,∴∠A=∠ODA,∵∠CBD=∠A,∴∠CBD=∠ODA,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠ODA+∠CDB=90°,∴∠ODB=90°,∴OD⊥BD,∴BD为⊙O的切线;
(3)∵∠CBD=∠A,∠DCB=∠BCA,∴△CDB∽△CBA,∴CD:CB=CB:CA,∴CB2=CDCA,∵点D是线段AC的黄金分割点,∴AD2=CDAC,∵AD=CB,∵AE为直径,∴∠ADE=90°,在△ADE和△BCD中,∵∠A=∠CBD,AD=BC,∠ADE=∠C,∴△ADE≌△BCD,∴DE=DC,∵EF⊥BC,∴∠EFC=90°,∴四边形CDEF为矩形,∴四边形DEFC是正方形.
科目:初中数学 来源: 题型:
【题目】下列说法中正确的有( )
①由两条射线所组成的图形叫做角;
②两点之间,线段最短:
③两个数比较大小,绝对值大的反而小:
④单项式和多项式都是整式.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,Rt△ABC中,∠BAC=90°
(1)按要求作图:(保留作图痕迹)
①延长BC到点D,使CD=BC;
②延长CA到点E,使AE=2CA;
③连接AD,BE并猜想线段 AD与BE的大小关系;
(2)证明(1)中你对线段AD与BE大小关系的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.
(1)点Q的速度为 cm/s(用含x的代数式表示).
(2)求点P原来的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且
(1)求a、b的值;
(2)①在x轴的正半轴上存在一点M,使三角形COM的面积是三角形ABC的面积的一半,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使三角形COM的面积三角形ABC的面积的一半仍然成立? 若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时, 的值是否会改变?若不变,求其值;若改变,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小英同时掷甲、乙两枚质地均匀的正方体骰子.记甲骰子朝上一面的数字为x,乙骰子朝上一面的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com