【题目】已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,经过点(-1,0),有下列结论:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
科目:初中数学 来源: 题型:
【题目】如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.
(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知为优三角形,
,
,
,
①如图1,若,
,
,求
的值.
②如图2,若,求优比
的取值范围.
(3)已知是优三角形,且
,
,求
的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是 .
(1)请将上面三个空补充完整;
(2)请你利用整式的运算对以上规律进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,对角线AC=8cm.射线AF⊥AC,垂足为A.动点P从点C出发在CA上运动,动点Q从点A出发在射线AF上运动,两点的运动速度都是2cm/s.若两点同时出发,多少时间后,四边形AQBP是特殊四边形?请说明特殊四边形的名称及理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.
类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,点
,点
.
(1)画出关于
轴的对称图形
,并写出点
的对称点
的坐标;
(2)若点在
轴上,连接
、
,则
的最小值是 ;
(3)若直线轴,与线段
、
分别交于点
、
(点
不与点
重合),若将
沿直线
翻折,点
的对称点为点
,当点
落在
的内部(包含边界)时,点
的横坐标
的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校图书馆大楼工程在招标时,接到甲乙两个工程队的投标书,每施工一个月,需付甲工程队工程款16万元,付乙工程队12万元。工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成此项工程刚好如期完工;
(2)乙队单独完成此项工程要比规定工期多用3个月;
(3)若甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工。
你觉得哪一种施工方案最节省工程款,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,
,
,
,若点
从点
出发以每秒
的速度向点
运动,设运动时间为
秒
.
(1)若点恰好在
的角平分线上,求出此时
的值;
(2)若点使得
时,求出此时
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣
x﹣
对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3
个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com