【题目】如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.
(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知为优三角形,,,,
①如图1,若,,,求的值.
②如图2,若,求优比的取值范围.
(3)已知是优三角形,且,,求的面积.
【答案】(1)该命题是真命题,理由见解析;(2)①a的值为;②k的取值范围为;(3)的面积为或.
【解析】
(1)根据等边三角形的性质、优三角形和优比的定义即可判断;
(2)①先利用勾股定理求出c的值,再根据优三角形的定义列出的等式,然后求解即可;
②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下之间的关系,然后根据优比的定义求解即可;
(3)如图(见解析),设,先利用直角三角形的性质、勾股定理求出AC、AB的长及面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x的值,即可得出的面积.
(1)该命题是真命题,理由如下:
设等边三角形的三边边长为a
则其中两条边的和为2a,恰好是第三边a的2倍,满足优三角形的定义,即等边三角形为优三角形
又因该两条边相等,则这两条边的比为1,即其优比为1
故该命题是真命题;
(2)①
根据优三角形的定义,分以下三种情况:
当时,,整理得,此方程没有实数根
当时,,解得
当时,,解得,不符题意,舍去
综上,a的值为;
②由题意得:均为正数
根据优三角形的定义,分以下三种情况:()
当时,则
由三角形的三边关系定理得
则,解得,即
故此时k的取值范围为
当时,则
由三角形的三边关系定理得
则,解得,即
故此时k的取值范围为
当时,则
由三角形的三边关系定理得
则,解得,即
故此时k的取值范围为
综上,k的取值范围为;
(3)如图,过点A作,则
设
是优三角形,分以下三种情况:
当时,即,解得
则
当时,即,解得
则
当时,即,整理得,此方程没有实数根
综上,的面积为或.
科目:初中数学 来源: 题型:
【题目】一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法中正确的是:( )
①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,两锐角的度数之比为2:1,其最短边为1,射线CP交AB所在的直线于点P,且∠ACP=30°,则线段CP的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,AB是⊙O的切线,连接BP并延长,交直线l于点C.
(1)求证AB=AC;
(2)若PC=,OA=15,求⊙O的半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.
(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数图象上运动(不与D重合),过点Q作QM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是的直径,,、分别与圆相交于、,那么下列等式中一定成立的是( )
A. AEBF=AFCF B. AEAB=AOAD'
C. AEAB=AFAC D. AEAF=AOAD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要建一个如图所示的面积为300 的长方形围栏,围栏总长50m,一边靠墙(墙长25m),
(1)求围栏的长和宽;
(2)能否围成面积为400 的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,经过点(-1,0),有下列结论:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com