精英家教网 > 初中数学 > 题目详情

【题目】在一条不完整的数轴上从左到右有点ABDC,其中AB2BD3DC1,如图所示,设点ABDC所对应数的和是p

1)若以B为原点.写出点ADC所对应的数,并计算p的值;

2)①若原点O在图中数轴上点C的右边,且COxp=﹣71,求x

②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).

【答案】1A点对应的数为-2D点对应的数为3C点对应的数为4p=5;(2)①15;②-9-17.

【解析】

1)根据以B为原点,则ADC所对应的数分别为:-234,进而得到p的值;
2)①用x的代数式分别表示ABDC所对应的数,根据题意列方程解答即可;②根据题意可知A表示的数为-21 C点表示的数为-15,然后分情况讨论E的位置求解即可.

1)解:∵B为原点,AB=2,则A点对应的数为-2BD=3,则D点对应的数为3DC=1,则C点对应的数为3+1=4,则P=-2+3+4=5.

2)解: ①由题意,ABDC表示的数分别为:-6-x-4-x-1-x-x
则:-6-x-4-x-1-x-x=-71
解得:x=15

②由上题知:A表示的数为-15-6=-21 C点表示的数为-15

1)EAC之间时,如下图

AC=-15-(-21)=6,且AE=2CE,

解得CE=2

∴此时E点表示的数为-17

2)EC的右边时,如下图

AC=-15-(-21)=6,且AE=2CE

解得CE=6

∴此时E点表示的数为-9

综上:点E所对应的数为-9-17.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12OC边长为3.

(1)数轴上点A表示的数为 .

(2)将长方形OABC沿数轴水平移动,移动后的长方形记为OABC,移动后的长方形OABC与原长方形OABC重叠部分(如图8中阴影部分)的面积记为S.

①当S恰好等于原长方形OABC面积的一半时,数轴上点A表示的数是 .

②设点A的移动距离AA'=x

()S4时,求x的值;

()D为线段AA的中点,点E在找段OO'上,且OO'=3OE,当点DE所表示的数互为相反数时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OB是∠AOC的平分线,OD是∠COE的平分线.

1)若∠AOB40°,∠DOE30°,求∠BOD的度数;

2)若∠AOD与∠BOD互补,且∠DOE35°,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是平面直角坐标系的原点.在四边形OABC中,ABOC,BCx轴于C,A(1,1),B(3,1),动点PO点出发,沿x轴正方向以2个单位/秒的速度运动.设P点运动的时间为t秒(0t2).

(1)求经过O、A、B三点的抛物线的解析式;

(2)过PPDOAD,以点P为圆心,PD为半径作⊙P,P在点P的右侧与x轴交于点Q.

①则P点的坐标为_____,Q点的坐标为_____;(用含t的代数式表示)

②试求t为何值时,⊙P与四边形OABC的两边同时相切;

③设△OPD与四边形OABC重叠的面积为S,请直接写出St的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠AOB是平角,∠AOC=30°,BOD=60°,OMON分别是∠AOCBOD的平分线,∠MON等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的对角线AC=8BD=6,且PQRS分别是ABBCCDDA的中点,则PR2+QS2的值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:射线OPAE

1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.

2)如图2,若点C在射线AE上,OB平分∠AOCAE于点BOD平分∠COPAE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.

3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠Bn1OP的角平分线OBn,其中点BB1B2Bn1Bn都在射线AE上,试求∠ABnO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,,点EF分别在BCCD上,,试探究面积的最小值。

下面是小丽的探究过程:

(1)延长EBG,使,连接AG,可以证明.请完成她的证明;

(2),

①结合(1)中结论,通过计算得到x的部分对应值。请求出表格中a的值:(写出解答过程)

x

0

1

2

3

4

5

6

7

8

9

10

10

8.18

6.67

5.38

4.29

3.33

a

1.76

1.11

0.53

0

②利用上表和(1)中的结论通过描点、连线可以分别画出函数的图像、请在图②中完善她的画图;

根据以上探究,估计面积的最小值约为(结果估计到01)。

图① 图②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,,D是AC边上一点,且,联结BD,点E、F分别是BC、AC上两点(点E不与B、C重合),,AE与BD相交于点G

(1)求证:BD平分

(2)设,求之间的函数关系式;

(3)联结FG,当是等腰三角形时,求BE的长度

查看答案和解析>>

同步练习册答案