精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD的对角线AC=8BD=6,且PQRS分别是ABBCCDDA的中点,则PR2+QS2的值是__________

【答案】118

【解析】

连接PQQRRSSQ,易证四边形PQRS是平行四边形,因为ACBD,所以PQQR,所以四边形PQRS为矩形,进而可得PR2+QS2=PQ2+QR2+QR2+SR2=118,问题得解.

连接PQQRRSSQ

PQRS分别是ABBCCDDA的中点,

PSBD,QRBD,

∴四边形PQRS是平行四边形,

ACBD

PQQR

∴四边形PQRS为矩形,

PR2+QS2=PQ2+QR2+QR2+SR2==118

故答案为:118

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求证:无论m为何值时,这个方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,,结论:①;②;③;④,其中正确的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠B90°,AB3BC4CD12AD13,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一次函数y=﹣x+10的图象交x轴于点A,交y轴于点B.以P(1,0)为圆心的⊙Py轴相切,若点P以每秒2个单位的速度沿x轴向右平移,同时⊙P的半径以每秒增加1个单位的速度不断变大,设运动时间为t(s)

(1)点A的坐标为   ,点B的坐标为   OAB=   °;

(2)在运动过程中,点P的坐标为   P的半径为   (用含t的代数式表示);

(3)当⊙P与直线AB相交于点E、F

①如图2,求t=时,弦EF的长;

②在运动过程中,是否存在以点P为直角顶点的RtPEF,若存在,请求出t的值;若不存在,请说明理由(利用图1解题).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

【答案】30°

【解析】(1)连结OC,如图,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.

答:

(1)证明:连结OC,如图,

OA=OC

∴∠A=OCA

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC

∴∠ABD=BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F

AC=CF

连接AD

AB是⊙O的直径,

ADBD

ADCF

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB

AD=AC

AD=CF

ADCF

∴四边形ACFD是菱形。

故答案为:30°.

型】解答
束】
22

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

(1)求出y与x的函数关系式

(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?

(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AEBF,∠A=60°,点P为射线AE上任意一点(不与点A重合),BCBD分别平分∠ABP和∠PBF,交射线AE于点C,点D

1)图中∠CBD= °;

2)当∠ACB=ABD时,∠ABC= °;

3)随点P位置的变化,图中∠APB与∠ADB之间的数量关系始终为 ,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,AE是∠BAC的平分线,∠EAD=15°,∠B=40°

1)求∠C的度数.

2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含αβ的式子表示∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案