精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+2x+8x轴交于A,B两点,与y轴交于点C,且B(4,0).

(1)求抛物线的解析式及其顶点D的坐标;

(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;

(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.

【答案】(1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣8;(3)存在点Q(2,8)使△QBC的面积最大.

【解析】

(1)把点B的坐标代入y=ax2+2x+8求得a的值即可得到该抛物线的解析式再把所得解析式配方化为顶点式即可得到抛物线顶点D的坐标

(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值因此求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;

(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+8)(0<m<4),然后用含m的代数式表达出△BCQ的面积并将所得表达式配方化为顶点式即可求得对应点Q的坐标.

(1)∵抛物线y=ax2+2x+8经过点B(4,0),

16a+8+8=0,

a=﹣1,

∴抛物线的解析式为y=﹣x2+2x+8=﹣(x﹣1)2+9,

D(1,9);

(2)∵当x=0时,y=8,

C(0,8).

设直线CD的解析式为y=kx+b.

将点C、D的坐标代入得:,解得:k=1,b=8,

∴直线CD的解析式为y=x+8.

y=0时,x+8=0,解得:x=﹣8,

∴直线CDx轴的交点坐标为(﹣8,0).

∵当P在直线CD上时,|PC﹣PD|取得最大值,

p=﹣8;

(3)存在,

理由:如图,由(2)知,C(0,8),

B(4,0),

∴直线BC的解析式为y=﹣2x+8,

过点QQEy轴交BCE,

Q(m,﹣m2+2m+8)(0<m<4),则点E的坐标为:(m,﹣2m+8),

EQ=﹣m2+2m+8﹣(﹣2m+8)=﹣m2+4m,

SQBC=(﹣m2+4m)×4=﹣2(m﹣2)2+8,

∴m=2时,SQBC最大,此时点Q的坐标为:(2,8).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,ADCD于点D.EAB延长线上一点,CE交⊙O于点F连结OCAC.

(1)求证AC平分∠DAO

(2)若∠DAO=105°E=30°.①求∠OCE的度数.②若⊙O的半径为,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰RtOBF、等腰RtABE,连接EFOMP点,当点B在射线OM上移动时,PB的长度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的长度随B点的运动而变化

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB的大小为αP是∠AOB内部的一个定点,且OP2,点EF分别是OAOB上的动点,若△PEF周长的最小值等于2,则α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)如图所示,下列结论中:

①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).

其中正确的结论有(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】垃圾不落地,城市更美丽.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生是否随手丢垃圾这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

请你根据以上信息,解答下列问题:

(1)补全上面的条形统计图和扇形统计图;

(2)所抽取学生是否随手丢垃圾情况的众数是   

(3)若该校七年级共有1500名学生,请你估计该年级学生中经常随手丢垃圾的学生约有多少人?谈谈你的看法?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为3的等边△ABC的边AB上一点P,作PEACEQBC延长线上一点,当PACQ时,连PQAC边于D,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,

(1)求证:△ABC是等边三角形;

(2)求圆心O到BC的距离OD.

查看答案和解析>>

同步练习册答案