精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;

(2)连接DC、BC、DB,求证:△BCD是直角三角形;

(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.


解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),

∴根据题意,得

解得

∴抛物线的解析式为y=﹣x2+2x+3.

(2)由y=﹣x2+2x+3得,D点坐标为(1,4),

∴CD==

BC==3

BD==2

∵CD2+BC2=(2+(32=20,BD2=(22=20,

∴CD2+BC2=BD2

∴△BCD是直角三角形;

(3)存在.CD2+BC2=(2+(32=20,BD2=(22=

y=﹣x2+2x+3对称轴为直线x=1.

①若以CD为底边,则PD=PC,

设P点坐标为(x,y),根据两点间距离公式,

得x2+(3﹣y)2=(x﹣1)2+(4﹣y)2

即y=4﹣x.

又P点(x,y)在抛物线上,

∴4﹣x=﹣x2+2x+3,

即x2﹣3x+1=0,

解得x1=,x2=<1,应舍去,

∴x=

∴y=4﹣x=

即点P坐标为().

②若以CD为一腰,

∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,

此时点P坐标为(2,3).

∴符合条件的点P坐标为()或(2,3).


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:


一辆汽车沿着一条南北方向的公路来回行驶。某一天早晨从A地出发,晚上到达B地。

约定向北为正,向南为负,当天记录如下:(单位:千米)

-18.3, -9.5, +7.1, -14, -6.2, +13, -6.8, -8.5

(1)问B地在A地何处,相距多少千米?

(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为  

查看答案和解析>>

科目:初中数学 来源: 题型:


中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了 200 名学生;

(2)将图1、图2补充完整;

(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).

查看答案和解析>>

科目:初中数学 来源: 题型:


某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体(  )

    A.3                     B. 4                           C.                             5    D.   6

查看答案和解析>>

科目:初中数学 来源: 题型:


在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(  )

 

      A.                       (4n﹣1,)          B. (2n﹣1,)    C.   (4n+1,)     D. (2n+1,

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中.顶点为(﹣4,﹣1)的抛物线交y轴于点A(0,3),交x轴于B,C两点.

(1)求此抛物线的解析式;

(2)已知点P是抛物线上位于B,C两点之间的一个动点,问:当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时四边形ABPC的面积.

(3)过点B作AB的垂线交抛物线于点D,是否存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆?若存在,求出圆的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:2x﹣y=2,

求:〔(x2+y2)﹣(x﹣y)2+2y(x﹣y)〕÷4y的值.

查看答案和解析>>

同步练习册答案