【题目】两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).
(1)当点C落在边EF上时,x= cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.
【答案】
(1)
解:如图1所示:作CG⊥AB于G点.
,
在Rt△ABC中,由AC=6,∠ABC=30,得
BC==6.
在Rt△BCG中,BG=BCcos30°=9.
四边形CGEH是矩形,
CH=GE=BG+BE=9+6=15cm,
故答案为:15;
(2)
解:①当0≤x<6时,如图2所示.
,
∠GDB=60°,∠GBD=30°,DB=x,得
DG=x,BG=x,重叠部分的面积为y=DGBG=×x×x=x2
②当6≤x<12时,如图3所示.
,
BD=x,DG=x,BG=x,BE=x﹣6,EH=(x﹣6).
重叠部分的面积为y=S△BDG﹣S△BEH=DGBG﹣BEEH,
即y=×x×x﹣(x﹣6)(x﹣6)
化简,得y=﹣x2+2x﹣6;
③当12<x≤15时,如图4所示.
,
AC=6,BC=6,BD=x,BE=(x﹣6),EG=(x﹣6),
重叠部分的面积为y=S△ABC﹣S△BEG=ACBC﹣BEEG,
即y=×6×6﹣(x﹣6)(x﹣6),
化简,得y=18﹣(x2﹣12x+36)=﹣x2+2x+12;
综上所述:y=;
(3)
解:如图5所示作NG⊥DE于G点.
,
点M在NG上时MN最短,
NG是△DEF的中位线,
NG=EF=.
MB=CB=3,∠B=30°,
MG=MB=,
MN最小=3﹣=.
【解析】(1)根据锐角三角函数,可得BG的长,根据线段的和差,可GE的长,根据矩形的性质,可得答案;
(2)分类讨论:①当0≤t<6时,根据三角形的面积公式,可得答案;②当6≤t<12时,③当12<t≤15时,根据面积的和差,可得答案;
(3)根据点与直线上所有点的连线中垂线段最短,可得M在线段NG上,根据三角形的中位线,可得NG的长,根据锐角三角函数,可得MG的长,根据线段的和差,可得答案.
此题考查了图形的移动变换,涉及知识点有矩形的性质,锐角三角函数,三角形面积公式,中垂线性质,中位线性质等.
科目:初中数学 来源: 题型:
【题目】如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.
(1)已求得甲的平均成绩为8环,求乙的平均成绩;
(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;
(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选 参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选 参赛更合适.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是( )
A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根
B.如果方程M的两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=,求线段OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,E是CD上的一点,连接BE交AC于O,连接DO并延长交BC于E.
(1)求证:△FOC≌△EOC;
(2)将此图中的AD、BE分别延长交于点N,作EM∥BC交CN于M,再连接FM即得到图2.
求证:①;②FD=FM.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com