4£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4cm£¬BC=3cm£¬¶¯µãM£¬N´Óµ«Cͬʱ³ö·¢£¬¾ùÒÔÿÃë1cmµÄËÙ¶È·Ö±ðÑØCA¡¢CBÏòÖÕµãA¡¢BÒÆ¶¯£¬Í¬Ê±¶¯µãP´ÓµãB³ö·¢£¬ÒÔÿÃë2cmµÄËÙ¶ÈÑØBAÏòÖÕµãAÒÆ¶¯£¬Á¬½ÓPM£¬PNÉèÒÆ¶¯Ê±¼äΪt£¨µ¥Î»£ºÃ룬0£¼t£¼2.5£©
£¨1£©AM=4-t£»AP=5-2t£¨Çë·Ö±ðÓú¬tµÄ´úÊýʽ±íʾ£©
£¨2£©µ±tΪºÎֵʱ£¬ÒÔA£¬P£¬MΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¿
£¨3£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹ËıßÐÎAPNCµÄÃæ»ýSÓÐ×îСֵ£»Èô´æÔÚ£¬ÇóSµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ïȸù¾Ý¹´¹É¶¨ÀíÇó³öABµÄ³¤£¬ÔÙÓÉÏ߶εĺͲ¿ÉµÃµ½½á¹û£»
£¨2£©·ÖÀàÌÖÂÛ£º¡÷AMP¡×¡÷ABCºÍ¡÷APM¡×¡÷ABCÁ½ÖÖÇé¿ö£®ÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀýÀ´ÇótµÄÖµ£»
£¨3£©Èçͼ£¬¹ýµãP×÷PH¡ÍBCÓÚµãH£¬¹¹ÔìÆ½ÐÐÏßPH¡ÎAC£¬ÓÉÆ½ÐÐÏß·ÖÏ߶γɱÈÀýÇóµÃÒÔt±íʾµÄPHµÄÖµ£»È»ºó¸ù¾Ý¡°S=S¡÷ABC-S¡÷BPH¡±ÁгöSÓëtµÄ¹ØÏµÊ½S=$\frac{4}{5}$£¨t-$\frac{3}{2}$£©2+$\frac{21}{5}$£¨0£¼t£¼2.5£©£¬ÔòÓɶþ´Îº¯Êý×îÖµµÄÇ󷨼´¿ÉµÃµ½SµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ßÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4cm£¬BC=3cm£¬
¡àAB=$\sqrt{{AC}^{2}+{BC}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5£¬
¡àAM=AC-CM=4-t£¬AP=AB-PB=5-2t£®
¹Ê´ð°¸Îª£º4-t£¬5-2t£»

£¨2£©ÒÔA£¬P£¬MΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¬·ÖÁ½ÖÖÇé¿ö£º
¢Ùµ±¡÷AMP¡×¡÷ABCʱ£¬$\frac{AP}{AC}$=$\frac{AM}{AB}$£¬¼´$\frac{5-2t}{4}$=$\frac{4-t}{5}$£¬
½âµÃt=$\frac{3}{2}$£»
¢Úµ±¡÷APM¡×¡÷ABCʱ£¬$\frac{AM}{AC}$=$\frac{AP}{AB}$£¬¼´$\frac{4-t}{4}$=$\frac{5-2t}{5}$£¬
½âµÃt=0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£»
×ÛÉÏËùÊö£¬µ±t=$\frac{3}{2}$ʱ£¬ÒÔA¡¢P¡¢MΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£»

£¨3£©´æÔÚijһʱ¿Ìt£¬Ê¹ËıßÐÎAPNCµÄÃæ»ýSÓÐ×îСֵ£®ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚijһʱ¿Ìt£¬Ê¹ËıßÐÎAPNCµÄÃæ»ýSÓÐ×îСֵ£®
Èçͼ£¬¹ýµãP×÷PH¡ÍBCÓÚµãH£®ÔòPH¡ÎAC£¬
¡à$\frac{PH}{AC}$=$\frac{PB}{AB}$£¬¼´$\frac{PH}{4}$=$\frac{2t}{5}$£¬
¡àPH=$\frac{8}{5}$t£¬
¡àS=S¡÷ABC-S¡÷BPN£¬
=$\frac{1}{2}$¡Á3¡Á4-$\frac{1}{2}$¡Á£¨3-t£©•$\frac{8}{5}$t£¬
=$\frac{4}{5}$£¨t-$\frac{3}{2}$£©2+$\frac{21}{5}$£¨0£¼t£¼2.5£©£®
¡ß$\frac{4}{5}$£¾0£¬
¡àSÓÐ×îСֵ£®
µ±t=$\frac{3}{2}$ʱ£¬S×îСֵ=$\frac{21}{5}$£®
´ð£ºµ±t=$\frac{3}{2}$ʱ£¬ËıßÐÎAPNCµÄÃæ»ýSÓÐ×îСֵ£¬Æä×îСֵÊÇ$\frac{21}{5}$£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éµÄÊÇÏàËÆÐÎ×ÛºÏÌâ£¬Éæ¼°µ½ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢Æ½ÐÐÏß·ÖÏ߶γɱÈÀý£¬¶þ´Îº¯Êý×îÖµµÄÇó·¨ÒÔ¼°Èý½ÇÐÎÃæ»ý¹«Ê½£®½â´ð£¨1£©Ìâʱ£¬Ò»¶¨Òª·ÖÀàÌÖÂÛ£¬ÒÔ·À©½â£®ÁíÍ⣬ÀûÓÃÏàËÆÈý½ÇÐεĶÔÓ¦±ß³É±ÈÀý½âÌâʱ£¬Îñ±ØÕÒ×¼¶ÔÓ¦±ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬Õý·½ÐÎOABCµÄ±ßOA£¬OCÔÚ×ø±êÖáÉÏ£¬µãBµÄ×ø±êΪ£¨-4£¬4£©£®µãP´ÓµãA³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØxÖáÏòµãOÔ˶¯£»µãQ´ÓµãOͬʱ³ö·¢£¬ÒÔÏàͬµÄËÙ¶ÈÑØxÖáµÄÕý·½ÏòÔ˶¯£¬¹æ¶¨µãPµ½´ïµãOʱ£¬µãQҲֹͣÔ˶¯£®Á¬½ÓBP£¬¹ýPµã×÷BPµÄ´¹Ïߣ¬Óë¹ýµãQƽÐÐÓÚyÖáµÄÖ±ÏßlÏཻÓÚµãD£®BDÓëyÖá½»ÓÚµãE£¬Á¬½ÓPE£®ÉèµãPÔ˶¯µÄʱ¼äΪt£¨s£©£®
£¨1£©¡ÏPBDµÄ¶ÈÊýΪ45¡ã£¬µãDµÄ×ø±êΪ£¨t£¬t£©£¨ÓÃt±íʾ£©£»
£¨2£©ÇóÖ¤£ºPE=AP+CE£»
£¨3£©µ±tΪºÎֵʱ£¬¡÷PBEΪµÈÑüÈý½ÇÐΣ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺£¨-$\frac{1}{2}$£©-1+2sin60¡ã+|$\sqrt{3}$-2|-£¨$\sqrt{3}$-¦Ð£©0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁи÷ʽÓëx3-5x2-4x+9ÏàµÈµÄÊÇ£¨¡¡¡¡£©
A£®£¨x3-5x2£©-£¨-4x+9£©B£®x3-5x2-£¨4x+9£©C£®-£¨-x3+5x2£©-£¨4x-9£©D£®x3+9-£¨5x2-4x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èô¶àÏîʽmx4-2x3-x2-1Óë¶àÏîʽ3x4-3x3-2x2+3µÄ²îÊÇÕûʽA£®ÇÒAÖв»º¬ËÄ´ÎÏ
£¨1£©ÇóÕûʽA¼°mµÄÖµ£»
£¨2£©Èôx=-2£¬ÇóAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¶¨Òå$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$Ϊ¶þ½×ÐÐÁÐʽ£®¹æ¶¨ËüµÄÔËËã·¨ÔòΪ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc£®ÄÇôµ±x=1ʱ£¬¶þ½×ÐÐÁÐʽ$|\begin{array}{l}{x+1}&{1}\\{0}&{x-1}\end{array}|$µÄֵΪx2-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôx2+x=2£¬Ôò1-x-x2=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ìÑéÀ¨ºÅÀïµÄÊýÊDz»ÊÇËüÇ°Ãæ·½³ÌµÄ½â£º3x+1=10£¨x=3£¬x=4£¬x=-4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©Èô9m•27m-1¡Â33m=27£¬ÇómµÄÖµ£»
£¨2£©Èô10m=20£¬10n=$\frac{1}{5}$£¬Çó9m¡Â32n£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸