【题目】如图,甲、乙用这4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上.
(1)甲从中任抽取一张,抽到4的概率是多少?
(2)甲、乙没人抽一张,甲先抽,乙后抽,抽出的牌不放回,甲、乙约定;只有甲抽到的牌面数字比乙大时甲胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b分别交x轴、y轴于A(1,0)、B(0,﹣1),交双曲线y=于点C、D.
(1)求k、b的值;
(2)写出不等式kx+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.
(1)经过几小时两车相遇?
(2)当出发2小时时,轿车和客车分别距离加油站O多远?
(3)经过几小时,两车相距50千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求若干个相同的不为零的有理数的除法运算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.
一般地,把(a≠0)记作a,记作“a 的圈c次方”.
(1)直接写出计算结果:2③= ,(-3)④ = ,⑤= .
(2)计算 24÷23 + (-8)×2③.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A、B、C三点,点A和点B间距20个单位长度且点A、B表示的有理数互为相反数,AC=36,数轴上有一动点P从点A出发,以每秒1个单位长度的速度沿数轴向终点C移动,设移动时间为t秒.
(1)点A表示的有理数是 ,点B表示的有理数是 ,点C表示的有理数是 .
(2)当点P运动到点B时,点Q从点O出发,以每秒6个单位长度的速度沿数轴在点O和点C之间往复运动.
①求t为何值时,点Q第一次与点P重合?
②当点P运动到点C时,点Q的运动停止,求此时点Q一共运动了多少个单位长度,并求出此时点Q在数轴上所表示的有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012﹣2017年污水处理率统计表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
污水处理率(%) | 83.0 | 84.6 | 86.1 | 87.9 | 90.0 | 92.0 |
(1)用折线图将2012﹣2017年北京市污水处理率表示出来,并在图中标明相应的数据;
(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为_____%,说明你的预估理由:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC外作等腰三角形ABD和等腰三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边上的中线,连接DE.求证:DE=2AM.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com