精英家教网 > 初中数学 > 题目详情
20.如图,在?ABCD中,O为BD的中点,过O作两条互相垂直的直线,分别交四边形ABCD于E,F,G,H,求证:四边形EFGH是菱形.

分析 根据平行四边形的对角线互相平分可得OA=OC,再根据两直线平行,内错角相等可得∠OAE=∠OCG,然后利用“角边角”证明△AOE和△COG全等,根据全等三角形对应边相等可得OE=OG,同理可得OF=OH,再根据对角线互相平分的四边形是平行四边形判断出四边形EFGH是平行四边形,然后根据对角线互相垂直的平行四边形是菱形解答.

解答 证明:连接AO,CO.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAO=∠GCO,
在△EAO和△CGO中,$\left\{\begin{array}{l}{∠EAO=∠GCO}\\{AO=CO}\\{∠AOE=∠COG}\end{array}\right.$,
∴△EAO≌△CGO(ASA),
∴OE=OG,
同理可得OH=OF
又∵HF⊥EG,
∴四边形EFGH是菱形.

点评 本题考查了平行四边形的性质,菱形的判定,熟记性质并求出三角形全等从而得到对角线被互相平分是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.如图,在?ABCD中,E,F分别为AD,BC的中点,连接EF,AF,BE,CE,DF,则图中和四边形ABFE面积相等的四边形有(  )个.
A.1B.2C.3D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.一种细菌的半径为3.9×l0-3m,用小数表示应是0.0039m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知四边形ABCD是平行四边形,AB<AD.
(1)利用尺规作∠BAD的平分线AG,交BC于点E,记点B关于AE对称的点为F(求保留作图痕迹,不写作法);
(2)在(1)所作的图中,若BF=6,AB=5,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列实数是无理数的是(  )
A.-$\sqrt{5}$B.0C.$\frac{1}{3}$D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,边长为5的菱形ABCD中,cosA=$\frac{3}{5}$,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.
(1)当点E与点D重合时,求EF的长;
(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;
(3)是否存在一点P,使得$\widehat{EF}$=2$\widehat{PE}$?若存在,求AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,抛物线y=x2-(2m+4)x+m2+4m交x轴于点A,B(点A在点B左侧),交y轴于点C,其顶点为D.
(1)求AB的长;
(2)连接CD,BC,当∠BCD=90°时,求抛物线解析式;
(3)连接AC,在(2)的前提下,在抛物线上是否存在点T,使得∠BCT+∠ACO=∠BAC?若存在,求出点T坐标;若不存在,写出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若$\root{3}{0.3670}$=0.7160,$\root{3}{3.670}$=1.542,则$\root{3}{367}$=7.16,$\root{3}{-3670}$=-15.42.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.实数0.5的算术平方根等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案