【题目】如图,在Rt△ABC中,∠ACB = 90,D为AB的中点,AE∥DC,CE∥DA.
(1)求证:四边形ADCE是菱形;
(2)连接DE,若AC =,BC =2,求证:△ADE是等边三角形.
【答案】(1)详见解析;(2)详见解析
【解析】
(1)先根据题意证明四边形ADCE是平行四边形,再由直角三角形斜边中线等于斜边的一半可得AD= BD=CD,即可可求证结论;
(2)在Rt△ABC中,由三角函数值可知∠CAB=30,继而根据菱形的性质可知AE = AD,∠EAD=2∠CAB=60,进而即可求证结论.
证明:(1)∵ AE∥DC,CE∥DA,
∴ 四边形ADCE是平行四边形.
∵ 在Rt△ABC中, D为AB的中点,
∴ AD= BD=CD=.
∴ 四边形ADCE是菱形.
(2)在Rt△ABC中,AC =,BC =2,
∴ .
∴ ∠CAB=30.
∵ 四边形ADCE是菱形.
∴ AE = AD,∠EAD=2∠CAB=60.
∴ △ADE是等边三角形.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB = 90,D为AB的中点,AE∥DC,CE∥DA.
(1)求证:四边形ADCE是菱形;
(2)连接DE,若AC =,BC =2,求证:△ADE是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.
(1)如图,,,,
①点P关于点B的定向对称点的坐标是 ;
②在点,,中,______是点P关于线段AB的定向对称点.
(2)直线分别与x轴,y轴交于点G,H,⊙M是以点为圆心,为半径的圆.
①当时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求的取值范围;
②对于,当时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与x轴交于点A,B(A在B的左侧),抛物线的对称轴与x轴交于点D,且OB=2OD.
(1)当时,
①写出抛物线的对称轴;
②求抛物线的表达式;
(2)存在垂直于x轴的直线分别与直线:和抛物线交于点P,Q,且点P,Q均在x轴下方,结合函数图象,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)若AB=6,AD=8,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是同-种蔬菜的两种裁植方法.甲:四珠顺次连结成为一个菱形,且.乙:四株连结成一个正方形。其中两行作物间的距离为行距;一行中相邻两株作物的距离为株距:设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积。设株距都为,其它客观因素都相同.则对于下列说法:
①甲的行距比乙的小;②甲的行距为;③甲、乙两种栽植方式,蔬菜形成的影子面积相同;④甲的空隙地面积比乙的空隙地面积少.其中正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com