【题目】在二次函数,与的部分对应值如下表:
… | … | |||||
… | … |
则下列说法:①图象经过原点;②图象开口向下;③图象经过点;④当时,随的增大而增大;⑤方程有两个不相等的实数根.其中正确的是( )
A. ①②③ B. ①③⑤ C. ①③④ D. ①④⑤
【答案】B
【解析】
结合图表可以得出当x=0或2时,y=0,x=3时,y=3,根据此三点可求出二次函数解析式,从而得出抛物线的性质.
解:∵由图表可以得出当x=0或2时,y=0,x=3时,y=3,
∴
解得:
∴y=x2-2x,
∵c=0,∴图象经过原点,故①正确;
∵a=1>0,
∴抛物线开口向上,故②错误;
把x=-1代入得,y=3,
∴图象经过点(-1,3),故③正确;
∵抛物线的对称轴是x=1,
∴x>1时,y随x的增大而增大,x<1时,y随x的增大而减小,故④错误;
∵抛物线y=ax2+bx+c与x轴有两个交点(0,0)、(2,0)
∴ax2+bx+c=0有两个不相等的实数根,故⑤正确;
故选:B.
科目:初中数学 来源: 题型:
【题目】王老师给学生出了一道题:求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”你认为他们谁说的有道理?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索题:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1;
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
…
根据前面的规律,回答下列问题:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=______.
(3)求:22014+22013+22012+…+23+22+2+1的值.(请写出解题过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)求证:PD=PF;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.
(1)点的坐标为( );
(2)当是等腰三角形时,求点的坐标;
(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时, .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com