精英家教网 > 初中数学 > 题目详情
如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=          °
135°.

试题分析:由AD为⊙O的直径,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,继而可得∠CBD=15°,由三角形内角和定理,即可求得答案.
∵AD为⊙O的直径,
∴∠ABD=90°,
∵AC=BC,∠ABC=75°,
∴∠BAC=∠ABC=75°,
∴∠C=180°-∠ABC-∠BAC=30°,∠CBD=∠ABD-∠ABC=15°,
∴∠D=∠C=30°,
∴∠BED=180°-∠CBD-∠D=135°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.
(1)求证:BM平分∠ABC;
(2)当BC=4,cosC=时,
①求⊙O的半径;
②求图中阴影部分的面积.(结果保留π与根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E.AB、CO交于点M,连接OB.
(1)求证:∠ABO=∠ACB;
(2)若sin∠EAB=,CB=12,求⊙O 的半径及的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的顶点A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是(  )

A.30°         B.45°              C.60°           D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为

A.4          B.6             C.            D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).
(1)求AD的长;
(2)设四边形BFED的面积为y,求y 关于t的函数关系式并写出自变量的取值范围
(3)当t为何的值时,以EE为半径的⊙F与CD边只有一个公共点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在图①的半径为R的半圆O内(含弧),求出一边落在直径MN上的最大的正三角形的面积?
(2)在图②的半径为R的半圆O内(含弧),求出一边落在直径MN上的最大的正方形的面积?
问题解决
(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积;若不存在,说明理由?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙的半径为1cm,⊙的半径为3cm,两圆的圆心距为4cm,则两圆的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

同步练习册答案