试题分析:(1)如图①,△ACB为满足条件的面积最大的正三角形.连接OC,则OC⊥AB,根据垂径定理得到AB=2OB,然后利用含30°的直角三角形三边的关系求出OB,再利用三角形的面积公式计算即可;
(2)如图②,正方形ABCD为满足条件的面积最大的正方形.连接OA.令OB=a,则AB=2a,利用勾股定理求出边长,再利用正方形的面积公式计算即可;
(3)如图③,先作一边落在直径MN上的矩形ABCD,使点A、D在弧MN上,再作半圆O及矩形ABCD关于直径MN所在直线的对称图形,A、D的对称点分别是A′、D′.连接A′D、OD,则A′D为⊙O的直径.在Rt△AA′D中,当OA⊥A′D时,S
△AA′D的面积最大.
(1)如图①,△ACB为满足条件的面积最大的正三角形.
连接OC,则OC⊥AB.
∵AB=2OB•tan30°=
R,
∴S
△ACB=
AB•OC=
×
R•R=
R
2.
(2)如图②,正方形ABCD为满足条件的面积最大的正方形.
连接OA.令OB=a,则AB=2a.
在Rt△ABO中,a
2+(2a)
2=R
2.
即a
2=
R
2.
S
正方形ABCD=(2a)
2=
R
2.
(3)存在.
如图③,先作一边落在直径MN上的矩形ABCD,使点A、D在弧MN上,再作半圆O及矩形ABCD关于直径MN
所在直线的对称图形,A、D的对称点分别是A′、D′.
连接A′D、OD,则A′D为⊙O的直径.
∴S
矩形ABCD=AB•AD=
AA
′•AD=S
△AA′D
∵在Rt△AA′D中,当OA⊥A′D时,S
△AA′D的面积最大.
∴S
矩形ABCD最大=
•2R•R=R
2=36.
考点: 1.垂径定理;2.等边三角形的性质;3.勾股定理;4.正方形的性质.