精英家教网 > 初中数学 > 题目详情
已知:如图,在平面直角坐标系中,A、B两点分别在x轴,y轴的正半轴上,点A(6,0),∠BAO=30°.
(1)求点B的坐标;
(2)点P是线段AB上的动点,若使△POA为等腰三角形,求点P的坐标;
(3)在第一象限内是否存在点Q,使得以Q、O、B为顶点的三角形与△OAB相似?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.
分析:(1)在直角三角形AOB中,由OA与tan30°的值求出OB的长,即可确定出B的坐标;
(2)P为线段AB上的动点,若使△POA为等腰三角形,则有OP=PA或PA=AO两种情况,如图1所示,①当OP1=P1A时,连接OP1,作P1C1⊥OA,则C1为AO的中点,P1C1为△AOB的中位线,求出P1C1与OC1的长,确定出此时P1的坐标;
②当P2A=AO时,连接OP2,作P2C2⊥OA,可得出P2A=AO=6,∠P2AO=30°,在Rt△P2AC中,求出P2C与AC2的长,进而确定出OC2的长,确定出此时P2的坐标即可;
(3)分三种情况考虑:当∠OBQ为直角时,如图2所示,再分两种情况考虑:①若△BQO∽△OAB;②若△BQO∽△OAB时,分别求出Q的坐标;当∠CQB为直角时,如图3所示,再分两种情况考虑:③过O作OQ⊥AB,此时△QOB∽△OAB,
④若△QBO∽△OAB时,分别求出Q的坐标;当∠BOQ为直角时,经检验不合题意,综上,得到所有满足题意Q的坐标.
解答:解:(1)在Rt△AOB中,OB=OA•tan30°=6×
3
3
=2
3

则B坐标为(0,2
3
);

(2)P为线段AB上的动点,若使△POA为等腰三角形,则有OP=PA或PA=AO两种情况,如图1所示,
①当OP1=P1A时,连接OP1,作P1C1⊥OA,则C1为AO的中点,P1C1为△AOB的中位线,
∴P1C1=
1
2
BO=
3
,OC1=
1
2
OA=3,此时P1(3,
3
);
②当P2A=AO时,连接OP2,作P2C2⊥OA,
∵P2A=AO=6,∠P2AO=30°,
∴在Rt△P2AC中,P2C=
1
2
P2A=3,AC2=P2Acos30°=3
3

则OC2=OA-C2A=6-3
3
,即P2(6-3
3
,3);

(3)当∠OBQ为直角时,如图2所示,
①若△BQO∽△OAB,则∠BOQ=∠OAB=30°,
则BQ=OBtan30°=2,即Q(2,2
3
);
②若△BQO∽△OAB时,则∠BOQ=∠OAB=30°,
BQ=OBtan60°=2
3
×
3
=6,即Q(6,2
3
);
当∠CQB为直角时,如图3所示,
③过O作OQ⊥AB,此时△QOB∽△OAB,
∠BOQ=∠BAO=30°,
在Rt△OQB中,BQ=
1
2
OA=
3
,OQ=OBcos30°=3,
∵在Rt△QMO中,∠OQM=30°,
∴OM=
1
2
OQ=
3
2
,QM=OQcos30°=
3
2
2
,即Q(
3
2
3
2
2
);
④若△QBO∽△OAB时,则∠OBQ=∠OAB=30°,作QN⊥OA,∠QON=30°,如图4所示,
∴QN=
1
2
OQ=
1
2
×
1
2
OB=
3
2
,ON=OQcos30°=
3
2
,即Q(
3
2
3
2
);
当∠BOQ为直角时,Q在x轴上,不符合要求,
综上,符合题意的点Q有四个,分别为Q1(2,2
3
),Q2(6,2
3
),Q3
3
2
3
2
2
),Q4
3
2
3
2
).
点评:此题考查了一次函数综合题,涉及的知识有:锐角三角函数定义,含30度直角三角形的性质,中位线定理,相似三角形的性质,坐标与图形性质,利用了分类讨论及数形结合的思想,第二、三问分别根据P与Q的不同位置分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案