分析 根据圆内接四边形的性质得到∠APD=∠ACB=60°,过D作DH⊥AP于H,解直角三角形得到PH=1,DH=$\sqrt{3}$,AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=$\sqrt{13}$,AP=1+$\sqrt{13}$,根据相似三角形的性质列方程即可得到结论.
解答 解:∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠APD=∠ACB=60°,
过D作DH⊥AP于H,
∴∠AHD=∠DHP=90°,
∵PD=2,
∴PH=1,DH=$\sqrt{3}$,
∴AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=$\sqrt{13}$,
∴AP=1+$\sqrt{13}$,
∵∠ADP=∠BPA,∠DAP=∠ABP,
∴△ADP∽△ADB,
∴$\frac{AP}{AB}=\frac{PD}{AD}$,即$\frac{1+\sqrt{13}}{AB}$=$\frac{2}{4}$,
∴AB=2+2$\sqrt{13}$,
故答案为:2+2$\sqrt{13}$.
点评 本题考查了相似三角形的判定与性质、圆周角定理的应用,能够熟练运用相似三角形的判定与性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{3}{13}\sqrt{13}$ | D. | $\frac{2}{13}\sqrt{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com