【题目】寻找神奇点!每条抛物线内都有一个神奇的点F(也叫焦点),还有一条与之配套的直线!(也叫准线),使得抛物线上的每个点到F的距离等于到直线l的距离.如图,对于抛物线上任意一点D,都有DF=DH.
根据以上知识,我们来完成以下问题:
(1)因为抛物线是轴对称图形,由对称性可知这个神奇的点F应在抛物线的 上,且准线l一定与对称轴垂直即l⊥MN(对称轴).
(2)若准线l与对称轴MN交于E,MN交抛物线于点P,则PE、PF的数量关系是PE PF(填>、=、<),
(3)求抛物线y=﹣(x﹣2)2+4的神奇点(焦点)F的坐标.
【答案】(1)对称轴;(2)=;(3)点F(2,).
【解析】
(1)抛物线是轴对称图形,则点F应该在抛物线的对称轴上,即可求解;
(2)根据题意中焦点的性质解答即可;
(3)设PF=c,则点F的坐标和直线l的解析式可用含c的代数式表示,设D(m,),然后根据两点间的距离公式分别表示出DF2和HD2,根据DF=DH,可得关于m、c的方程,解方程即可求出c,进而可得结果.
解:(1)抛物线是轴对称图形,则点F应该在抛物线的对称轴上,
故答案为:对称轴;
(2)∵抛物线上的每个点到F的距离等于到直线l的距离,l⊥MN,∴PE=PF.
故答案为:=;
(3)如图,设PF=c,顶点P(2,4),则点F(2,4﹣c),直线l:y=c+4,
设D(m,),则DF2==,
HD2=,
∵DF=DH,∴=,
化简得:1﹣2c=2c,解得:c=,
故点F(2,).
科目:初中数学 来源: 题型:
【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
求证:∠ANC=∠ABE.
应用:Q是线段BC的中点,若BC=6,则PQ= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)
(1)试求与之间的函数表达式.
(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每次旋转都以图中的A、B、C、D、E、F中不同的点为旋转中心,旋转角度为k90°(k为整数),现在要将左边的阴影四边形正好通过n次旋转得到右边的阴影四边形,则n的值可以是( )
A.n=1可以,n=2,3不可B.n=2可以,n=1,3不可
C.n=1,2可以,n=3不可D.n=1,2,3均可
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.
(1)求证:点D为BC的中点;
(2)求AP的长度;
(3)求证:CP是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com