【题目】某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)
(1)试求与之间的函数表达式.
(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是( )
A. ①②③ B. 仅有①② C. 仅有①③ D. 仅有②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)请说出这个几何体模型的最确切的名称是__ __;
(2)如图②是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和三角形),请在网格中画出该几何体的左视图;
(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).
(1)求这个车库的高度AB;
(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).
(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).
(1)以点C为中心,把△ABC逆时针旋转90°,请在图中画出旋转后的图形△A′B′C,点B′的坐标为________;
(2)在(1)的条件下,求出点A经过的路径的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寻找神奇点!每条抛物线内都有一个神奇的点F(也叫焦点),还有一条与之配套的直线!(也叫准线),使得抛物线上的每个点到F的距离等于到直线l的距离.如图,对于抛物线上任意一点D,都有DF=DH.
根据以上知识,我们来完成以下问题:
(1)因为抛物线是轴对称图形,由对称性可知这个神奇的点F应在抛物线的 上,且准线l一定与对称轴垂直即l⊥MN(对称轴).
(2)若准线l与对称轴MN交于E,MN交抛物线于点P,则PE、PF的数量关系是PE PF(填>、=、<),
(3)求抛物线y=﹣(x﹣2)2+4的神奇点(焦点)F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,老张利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6m,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且项場恰好与水面平齐(即PAPC,水平线1与OC夹角a=8°(点A在OC上,则铅锤P处的水深h为( )(参考数据:sin8°=,cos8°=,tan8°=)
A.150cmB.144cmC.111cmD.105cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com