精英家教网 > 初中数学 > 题目详情

【题目】如图,图中的小方格都是边长为1的正方形, △ABC△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

(1)画出位似中心点0

(2)求出△ABC△A′B′C′的位似比;

(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5

【答案】(1)提示:位似中心在各组对应点连线的交点处.(2)位似比为12(3)

【解析】位似图形对应点连线所在的直线经过位似中心,如图,直线AA′BB′的交点就是位似中心O△ABC△A′B′C′的位似比等于ABA′B′的比,也等于ABA′B′在水平线上的投影比,即36=12.要画△A1B1C1,先确定点A1的位置,因为△A1B1C1△ABC的位似比等于1.5,因此OA1=1.5OA,所以OA1=9.再过点A1A1B1∥ABO B′B1,过点A1A1C1∥ACO C′C1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点

1)求反比例函数和一次函数的解析式;

2)求直线AB与x轴的交点C的坐标及AOB的面积;

3)求不等式的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的高,CEABC的中线.

1)若AD12BD16,求DE

2)已知点F是中线CE的中点,连接DF,若∠AEC57°,∠DFE90°,求∠BCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A20)的两条直线l1l2分别交y轴于点BC,其中点B在原点上方,点C在原点下方,已知AB

1)求点B的坐标;

2)若OCOB13,求直线l2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.

(1)求线段DO的长;

(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;

(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC已知AB=5,BC=8,AC=7,动点PQ分别在边ABAC使APQ的外接圆与BC相切则线段PQ的最小值等于_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于任意三点给出如下定义:如果矩形的任何一条边均与某条坐标轴平行或共线,且三点都在矩形的内部或边界上,那么称该矩形为点的外延矩形,在点所有的外延矩形中,面积最小的矩形称为点的最佳外延矩形.例如,图中的矩形都是点的外延矩形,矩形是点的最佳外延矩形.

)如图,点为整数).

如果,则点的最佳外延矩形的面积是__________.

如果点的最佳外延矩形的面积是,且使点在最佳外延矩形的一边上,请写出一个符合题意的值__________.

)如图,已知点在函数的图象上,且点的坐标为,求点的最佳外延矩形的面积的取值范围以及该面积最小时的取值范围.

查看答案和解析>>

同步练习册答案