分析 (1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;
(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.
解答 证明:(1)∵DE、DF是△ABC的中位线,
∴DF=CE,DF∥CE,DB=DC.
∵DF∥CE,
∴∠C=∠BDF.
在△CDE和△DBF中$\left\{\begin{array}{l}{DC=BD}\\{∠C=∠BDF}\\{CE=DF}\end{array}\right.$,
∴△CDE≌△DBF (SAS);
(2)∵DE、DF是△ABC的中位线,
∴DF=AE,DF∥AE,
∴四边形DEAF是平行四边形,
∵EF与AD交于O点,
∴AO=OD
点评 本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.
科目:初中数学 来源: 题型:选择题
| A. | a>b | B. | a=b | C. | a<b | D. | 不能判断 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 平均数 | B. | 方差 | C. | 众数 | D. | 中位数 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -1 | B. | $\sqrt{3}$-2 | C. | $\sqrt{3}$+2 | D. | -$\sqrt{3}$-2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com