精英家教网 > 初中数学 > 题目详情

【题目】某校开展了以责任、感恩为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图,

1)该班有   人,学生选择和谐观点的有   人,在扇形统计图中,和谐观点所在扇形区域的圆心角是   度;

2)如果该校有360名初三学生,利用样本估计选择感恩观点的初三学生约有   人;

3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到和谐感恩观点的概率(用树状图或列表法分析解答).

【答案】(1) 40,4,36;(2) 90(人)(3).

【解析】

1)根据选择进取的人数是12,占总人数的30%,据此即可求得总人数;总人数乘以选择和谐观点的比例即可求得选择和谐观点的人数;选择和谐观点的百分比乘以360°,即可求得,和谐观点所在扇形区域的圆心角;

2)总人数360乘以选择感恩观点比例,即可求得;

3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示,即可利用概率公式求解.

1)该班的总人数是:12÷30%40(人);

选择和谐观点的有40×10%4(人);

和谐观点所在扇形区域的圆心角是360°×10%36°

2)该校有360名初三学生,利用样本估计选择感恩观点的初三学生约有:360×25%90(人);

3)设平等、进取、和谐、感恩、互助分别用ABCDE表示.利用树状图表示:

共有20种情况,选择和谐、感恩的有2种情况,因而恰好选到和谐感恩观点的概率是:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,一超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为12.4,AB的长度是13米,MN是二楼楼顶,MNPQCMN上处在自动扶梯顶端B点正上方的一点,BCMN,在自动扶梯底端A处测得C点的仰角为37°,则二楼的层高BC约为(精确到0.1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(  )

1 2

A. 4 B. 3.6 C. 2.2 D. 4.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,如图,对角线ACBD相交于点OAC=10BD=8

1)若ACBD,试求四边形ABCD的面积;

2)若ACBD的夹角∠AOD=60°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD在平面直角坐标系的第一象限内,BCx轴平行,AB=1,点C的坐标为(6,2),EAD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.

(1)求反比例函数的解析式和点E的坐标;

(2)求直线BF的解析式;

(3)直接写出y1>y2时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价之间符合一次函数关系,其图象如图所示.

yx的函数关系式;

物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+2x+3x轴交于AB两点,与y轴交于点C,顶点为D,连接BC

1)点G是直线BC上方抛物线上一动点(不与BC重合),过点Gy轴的平行线交直线BC于点E,作GFBC于点F,点MN是线段BC上两个动点,且MNEF,连接DMGN.当△GEF的周长最大时,求DM+MN+NG的最小值;

2)如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将△DPQ沿PQ翻折,且线段DP的中点恰好落在线段BQ上,将△AOC绕点O逆时针旋转60°得到△AOC′,点T为坐标平面内一点,当以点QA′、C′、T为顶点的四边形是平行四边形时,求点T的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包荒山种植某产品种蜜柚已知该蜜柚的成本价为8千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量千克与销售单价千克之间的函数关系如图所示.

yx的函数关系式,并写出x的取值范围;

当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙OAB为⊙O的直径,BDAB,交AC的延长线于点D

1EBD的中点,连结CE,求证:CE是⊙O的切线;

2)若AC3CD,求∠A的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)

40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36

34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45

(1)补全频率分布表和频率分布直方图.

分组

频数

频率

4.522.5

2

0.050

22.530.5

3

30.538.5

10

0.250

38.546.5

19

46.554.5

5

0.125

54.562.5

1

0.025

合计

40

1.000

(2)填空:在这个问题中,总体是____,样本是____.由统计结果分析的,这组数据的平均数是38.35(),众数是____,中位数是_____

(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?

(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?

查看答案和解析>>

同步练习册答案