分析 (1)根据直角三角形全等的判定方法HL易证得△ABD≌△CAE,可得∠DAB=∠ACE,再根据三角形内角和定理即可证得结论;
(2)与(1)同理结论仍成立.
解答 (1)解:
∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA}\\{AD=CE}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC,
故答案为:AB⊥AC;
(2)成立.
证明如下:
∵BD⊥DE于D,CE⊥DE于E,
∴∠ADB=∠CEA=90°,
在Rt△ADB和Rt△CEA中,
$\left\{\begin{array}{l}{AB=CA}\\{AD=CE}\end{array}\right.$
∴Rt△ABD≌Rt△CAE(HL),
∴∠DAB=∠ACE.
又∵∠ACE+∠CAE=90°,
∴∠DAB+∠CAE=90°
∴∠BAC=90°,
即AB⊥AC
点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(对应角相等、对应边相等)是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com