分析 (1)由角平分线的判定方法得出∠FAD=∠EAD即可;
(2)延长AD交BC于M,证出∠ABD=∠ACD,由AAS证明△ABD≌△ACD,得出AB=AC,由等腰三角形的三线合一性质即可得出结论.
解答 (1)证明:∵BE⊥AC、CF⊥AB于点E、F,DE=DF,
∴AD平分∠BAC,
∴∠FAD=∠EAD;
(2)解:AD垂直平分BC,理由如下:![]()
延长AD交BC于M,如图所示:
∵BE⊥AC、CF⊥AB于点E、F,
∴∠ABD+∠BAE=90°,∠ACD+∠BAE=90°,
∴∠ABD=∠ACD,
在△ABD和△ACD中,$\left\{\begin{array}{l}{∠FAD=∠EAD}&{\;}\\{∠ABD=∠ACD}&{\;}\\{AD=AD}&{\;}\end{array}\right.$,
∴△ABD≌△ACD(AAS),
∴AB=AC,
∵∠FAD=∠EAD,
∴AD垂直平分BC.
点评 本题考查了全等三角形的判定与性质、角平分线的判定方法、等腰三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com