【题目】如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.
(1)t为何值时,四边形PQCD为平行四边形?
(2)t为何值时,四边形PQCD为等腰梯形?
(3)t为何值时,四边形ABQP为矩形?
【答案】(1)t=6时;(2)t=7时;(3)t=时.
【解析】试题分析:(1)要使四边形PQCD是平行四边形,则点在运动的过程中,只需PD=QC就满足题意;
(2)作DE⊥BC,PF⊥BC,垂足分别为E,F,要使四边形PQCD为等腰梯形,则QF=CE;依此即可求解;
(3)要使四边形ABQP为矩形,则点在运动的过程中,只需AP=BQ就满足题意.
试题解析:解:由已知得AP=t,CQ=3t,PD=24-t,BQ=26-3t.
(1)∵PD∥CQ,∴当PD=CQ时,即3t=24-t时,四边形PQCD为平行四边形,解得t=6.故当t=6时,四边形PQCD为平行四边形.
(2)如图所示,作DE⊥BC,PF⊥BC,垂足分别为E,F,则CE=2.当QF=CE时,即QF+CE=2CE=4时,四边形PQCD是等腰梯形.此时有CQ-EF=4,即3t—(24一t)=4,解得t=7.故当t=7时,四边形PQCD为等腰梯形.
(3)若四边形ABQP为矩形,则AP=BQ,即t=26—3t,解得t=.故当t=时,四边形ABQP为矩形.
科目:初中数学 来源: 题型:
【题目】(1)如图(1),AB∥CD,点P在AB,CD外部,若∠B=50°,∠D=25°,则∠BPD= °
(2)如图(2),AB∥CD,点P在AB,CD内部,则∠B,∠D,∠BPD之间有何数量关系?证明你的结论.
(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y1=k1x与反比例函数y2= 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;
(2)结合图象,求出当k3x+b> >k1x时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A. 如图1,展开后测得∠1=∠2
B. 如图2,展开后测得∠1=∠2且∠3=∠4
C. 如图3,测得∠1=∠2
D. 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于不等式组 下列说法正确的是( )
A. 此不等式组无解 B. 此不等式组有7个整数解
C. 此不等式组的负整数解是﹣3,﹣2,﹣1 D. 此不等式组的解集是<x≤2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.
(1)求证:BE=AD;
(2)用含α的式子表示∠AMB的度数;
(3)当α=90°时,取AD,BE的中点分别为点P,Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为( )
A. a2 B. a2 C. a2 D. a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的伴随方程,这个根在数轴上对应的点该不等式组的伴随点.
(1)在方程①,②,③中,不等式组 的伴随方程是 ;(填序号)
(2)如图,M、N都是关于的不等式组的伴随点,求的取值范围.
(3)不等式组的伴随方程的根有且只有2个整数,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com