【题目】如图,中,,,,是线段上的一个动点,以为直径作分别交、于、,连接,当线段长度取最小值时,______.
【答案】
【解析】
连结OE、OF,作OG⊥EF于G,AH⊥BC于H,如图,设⊙O的半径为r,易得△ABH为等腰直角三角形,则可求出AH的长,根据三角形内角和计算出∠BAC=60°,于是根据圆周角定理得到∠EOF=2∠BAC=120°,则∠OEF=30°,接着根据垂径定理得EG=FG,然后根据含30度的直角三角形三边的关系得到EG=OG=r,则EF=2EG=r,由于AD为⊙O的直径,利用垂线段最短得AD=AH=6时,AD最短,半径最小,EF最小,此时CD=CH,接着利用75°的正切值求出CH,从而得到CD的长.
连结OE、OF,作OG⊥EF于G,AH⊥BC于H,如图,设⊙O的半径为r.
∵∠ABC=45°,∴△ABH为等腰直角三角形,∴AH=AB=×6=6.
∵∠BCA=75°,∠ABC=45°,∴∠BAC=180°﹣75°﹣45°=60°,∴∠EOF=2∠BAC=120°.
∵OE=OF,∴∠OEF=30°.
∵OG⊥EF,∴EG=FG.在Rt△OEG中,OG=OE=r,∴EG=OG=r,∴EF=2EG=r.
∵AD为⊙O的直径,∴当AD=AH=6时,AD最短,半径最小,EF最小,此时CD=CH.在Rt△ACH中,tan∠ACH=tan75°==2+,∴CH==,∴此时CD的长为.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分线,CE⊥AN,垂足是E,连接DE交AC于F.
(1)求证:四边形ADCE为矩形;
(2)求证:DF∥AB,DF=;
(3)当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件20元,售价为每件30元,每月可卖出180件,如果该商品计划涨价销售,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.
(1)分析数量关系填表:
每台售价(元) | 30 | 31 | 32 | …… | 30+x |
月销售量(件) | 180 | 170 | 160 | …… | _____ |
(2)求y与x之间的函数解析式和x的取值范围
(3)当售价x(元/件)定为多少时,商场每月销售这种商品所获得的利润y(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别交于两点,抛物线经过点,与轴另一交点为,顶点为.
(1)求抛物线的解析式;
(2)在轴上找一点,使的值最小,求的最小值;
(3)在抛物线的对称轴上是否存在一点,使得?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,绕某点按一定方向旋转一定角度后得到,点A,B,C分别对应点A1,B1,C1 .
(1)根据点和的位置确定旋转中心是点______________.
(2)请在图中画出;
(3)请具体描述一下这个旋转:________________________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com