【题目】如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,求P点的坐标
【答案】(,0),(9,0),(,0).
【解析】分析:根据|题意得出,,再根据点P在x轴正半轴上,设出点P的坐标是,再分三种情况讨论当线段OA线段的长是其他两条线段长度的比例中项时,当线段OB线段的长是其他两条线段长度的比例中项时,当线段OP线段的长是其他两条线段长度的比例中项时,分别求出x的值,即可得出答案.
本题解析:∵直线y=3x+3与x轴交于点A,与y轴交于点B,
∴点A的坐标是(-1,0),点B的坐标是(0,3),
∴|OA|=1,OB=3,
∵点P在x轴正半轴上,
∴设点P的坐标是(x,0),
∵当线段OA线段的长是其他两条线段长度的比例中项时,
∴OA2=OBOP,
∴1=3x,
解得x= ,
∴点P的坐标是(,0),
当线段OB线段的长是其他两条线段长度的比例中项时,
∴OB2=OAOP,
∴9=1x,
解得x=9,
∴点P的坐标是(9,0),
当线段OP线段的长是其他两条线段长度的比例中项时,
∴OP2=OBOA,
∴x2=3×1,
解得x=
∴点P的坐标是(,0),
综上所述,点P的坐标是( ,0),(9,0),(,0).
故答案为:(,0),(9,0),(,0).
科目:初中数学 来源: 题型:
【题目】 如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.
下列结论正确的是 (写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,过点A作AD⊥AB交⊙O于点D,交BC于点E,点F在DA的延长线上,且∠ABF=∠C .
(1)求证:BF是⊙O的切线;
(2)若AD=4,cos∠ABF=,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠A=70°,将平行四边形ABCD绕点B顺时针旋转到平行四边形A1BC1D1的位置,此时C1D1恰好经过点C,则∠ABA1=______°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长为1,△ABC的顶点均在格点上. 请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1,若△ABC内有一点P(m,n),则经过上述变换后点P的坐标为___ __.
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2
(3) 若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,-2),则旋转中心坐标为___ _.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
(1)画出△ABC关于点B成中心对称的图形△A1BC1;
(2)以原点O为位似中心,相似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
A.48B.36C.24D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com