【题目】已知,直线与直线.
【1】(1)求两直线与轴交点A,B的坐标;
【2】(2)求两直线交点C的坐标;
【3】(3)求△ABC的面积.
【答案】
【1】(1) A(0,3),B(0,-1)
【2】(2) C(-1,1);
【3】(3)△ABC的面积==2
【解析】试题分析:(1)分别令各自函数表达式中的x=0,即可求出对应y值,则两直线与y轴交点A、B的坐标可求出;
(2)联立两个一次函数的解析式,解方程组即可求出两直线交点C的坐标;
(3)由(1)可求出AB的长,由(2)可知点C的横坐标绝对值即为边AB上的高,由三角形面积公式计算即可;
试题解析:
(1)对于y=2x+3,令x=0,则y=3.
∴点A的坐标为(0,3).
对于y=-2x-1,令x=0,则y=-1.
∴点B的坐标为(0,-1).
(2)解方程组
得
∴点C的坐标为(-1,1).
(3)△ABC的面积为×[3-(-1)]×|-1|=2.
科目:初中数学 来源: 题型:
【题目】如图是一个正方体的表面展开图,请回答下列问题:
(1)与面B、C相对的面分别是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进学生体育锻炼,某校八年级进行了体育测试,为了解女生体育测试情况,从中抽取了若干名女生的体育测试成绩.
a.体育委员小李在整理频数分布表时,不小心污染了统计表:
分组(分) | 频数 | 频数 |
21<x≤22 | 8 | 0.200 |
22<x≤23 | 4 | n |
23<x≤24 | 7 | 0.175 |
24<x≤25 | 3 | 0.075 |
25<x≤26 | 2 | 0.050 |
26<x≤27 | 8 | 0.200 |
27<x≤28 | m | 0.150 |
28<x≤29 | 2 | 0.050 |
合计 |
b.根据频数分布表,绘制如下频数分布直方图:
c.在此次测试中,共测试了800米,篮球,仰卧起坐,成绩统计如下:
项目 | 平均分 | 中位数 | 众数 |
800米 | 8.27 | 8.5 | 8.5 |
仰卧起坐 | 7.61 | 8 | 7.5 |
篮球 | 8.69 | 9 | 8 |
根据以上信息,回答下列问题:
(1)写出表中m,n的值;
(2)补全直方图;
(3)请结合C中统计图表,给该校女生体育训练提供建议(至少从两个不同的角度分析).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”. 例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.
请根据上述规定解答下列问题:
(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;
(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AB的中点,点D在线段CB上.
(1)图中共有 条线段.
(2)图中AD=AC+CD,BC=AB﹣AC,类似地,请你再写出两个有关线段的和与差的关系式:
① ;② .
(3)若AB=8,DB=1.5,求线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,射线OC在∠A0B的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“定分线”
(1)一个角的平分线______这个角的“定分线”;(填“是”或“不是”)
(2)如图2,若∠MPN= ,且射线PQ是∠MPN的“定分线”,则∠MPQ=_____(用含a的代数式表示出所有可能的结果)
(3)如图2,若∠MPN=45°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成90°时停止旋转,旋转的时间为t秒.同时射线PM绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止.当PQ是∠MPN的“定分线”时,求t的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,
(1)试判断DG与BC的位置关系,并说明理由.
(2)若∠A=70°,∠B=40°,求∠AGD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下证明过程:
已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.
证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.
请用类似的方法证明以下问题:
已知:关于x的一元二次方程x2﹣(m+1)x+2m-3=0 有两个实根x1和x2.
求证:x1≠x2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com