【题目】某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.
(1)请把三个图表中的空缺部分都补充完整;
(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
编号 | 教学方式 | 最喜欢的频数 | 频率 |
1 | 教师讲,学生听 | 20 | 0.10 |
2 | 教师提出问题,学生探索思考 | 0.5 | |
3 | 学生自行阅读教材,独立思考 | 30 | |
4 | 分组讨论,解决问题 | 0.25 |
【答案】(1)100,0.5,0.15,50;图见解析;(2)见解析.
【解析】
(1)首先根据编号1的频数和频率,求出九年级的总人数,进而可求出编号3的频率和编号4的频数;由于编号1、2、3、4的频率和为1,由此求得编号2的频率,乘以九年级的总人数即可得到编号2的频数.
(2)此题答案不唯一,可结合已补充完整的统计图来进行作答.
(1)如图;
编号 | 教学方式 | 最喜欢的频数 | 频率 |
1 | 教师讲,学生听 | 20 | 0.10 |
2 | 教师提出问题,学生探索思考 | 100 | 0.5 |
3 | 学生自行阅读教材,独立思考 | 30 | 0.15 |
4 | 分组讨论,解决问题 | 50 | 0.25 |
(2)答案不唯一,如:
最喜欢编号2的方法,建议2、4、1结合的方法,首先由教师提出问题,然后由同学们互相讨论解决问题,最后由教师进行点评和总结.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.点D是直线BC上方抛物线上一动点.
(1)求抛物线的解析式;
(2)如图1,连接BD、CD,设点D的横坐标为m,△BCD的面积为s.试求出s与m的函数关系式,并求出s的最大值;
(3)如图2,设AB的中点为E,作DF⊥BC,垂足为F,连接CD、CE,是否存在点D,使得以C、D,F三点为顶点的三角形与△CEO相似?若存在,请直接写出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为( )
A. 2B. 2﹣1C. D. +1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,M、N是△ABC的BC边上两点,且AB=AC,BM=CN
(1)如图1,证明:△ABN≌△ACM;
(2)如图2,当∠ANB=2∠B时,直接写出图中所有等腰三角形(△ABC除外)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校组织“校园诗词大会”,全校学生参加初赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了部分学生的成绩(满分100分),整理得到如下不完整的统计图表:
组别 | 成绩x分 | 频数(人数) | 频率 |
第1组 | 50≤x<60 | 6 | 0.12 |
第2组 | 60≤x<70 | 0.16 | |
第3组 | 70≤x<80 | 14 | a |
第4组 | 80≤x<90 | b | |
第5组 | 90≤x<100 | 10 |
请根据图表中所提供的信息回答下列问题:
(1)统计表中a= ,b= ;
(2)请将统计图表补充完整;
(3)根据调查结果,请估计该校1200名学生中,成绩不低于80分的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为___________cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A、众数是6吨 B、平均数是5吨 C、中位数是5吨 D、方差是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:平面内,如果一个四边形的四个顶点到某一点的距离都相等,则称这一点为该四边形的外心.
(1)下列四边形:平行四边形、矩形、菱形中,一定有外心的是 ;
(2)已知四边形ABCD有外心O,且A,B,C三点的位置如图1所示,请用尺规确定该四边形的外心,并画出一个满足条件的四边形ABCD;
(3)如图2,已知四边形ABCD有外心O,且BC=8,sin∠BDC=,求OC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com