精英家教网 > 初中数学 > 题目详情

【题目】水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:

1

2

3

4

5

6

7

8

售价x(/千克)

400

250

240

200

150

125

120

销售量y(千克)

30

40

48

60

80

96

100

观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(/千克)之间都满足这一关系.

1写出这个反比例函数的解析式,并补全表格;

2在试销8天后,公司决定将这种海产品的销售价格定为150/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?

3在按2中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

【答案】1,表格中填:30050;(220天(3)最高不超过每千克60元。.

【解析】整体分析:

(1)根表格中x,y的对应值确定x,y的函数关系式,补全表格;(2)分别求出8天后剩余的产品数量及第8天的产品价格;(3)确定继续销售15天后的产品数量,求出后2天每天的销售量,即可求解.

(1)∵xy=12000,

反比例函数的解析式y.

当y=40时,x==300;

当x=240时y==50.

(2)销售8天后剩下的数量2104-(30+40+48+50+60+80+96+100)=1600,

x=150时,y=80

∴1600÷80=20天,

∴余下的这些海产品预计再用20天可以全部售出.

(3)1600-80×15=400千克,

400÷2=200千克/天,

即如果正好用2天售完,那么每天需要售出200千克.

y=200时,x=60.

所以新确定的价格最高不超过60/千克才能完成销售任务.

型】解答
束】
22

【题目】如图,已知正方形的面积为9,点为坐标原点,点轴上,点轴上,点在函数的图象上,点为其双曲线上的任一点,过点分别作轴、轴的垂线,垂足分别为,并设矩形和正方形不重合部分的面积为

1点坐标和的值;

2时,求点坐标;

3写出关于的函数关系式.

【答案】(1) B3,3); k=9 (2) (3) ;当

【解析】整体分析

1根据正方形的性质得OAOC的长;(2设P(m, ),分两种情况当m≥3和0<m<3时,由矩形的面积列方程不解;(3)当m≥3和0<m<3时,分别用含m的代数式表示S.

:(1)因为正方形OABC的面积为9

所以OA=OC=3,

所以B(3,3),

所以k=3×3=9.

(2)反比例函数的解析式为

设P(m, ),

当m≥3时,AE=OE-OA=m-3,PE=

S=AE×PE=(m-3)×=(m-3).

所以(m-3)=

解得m=6, =

即P();

当0<m<3时,AE=-3,PE=m,

S=AE×PE=(-3)×m=m(-3).

所以m(-3)=

解得m= =6,

即P().

则点P的坐标为()或().

3当m≥3时,AE=OE-OA=m-3,PE=

S=AE×PE=(m-3)×=(m-3)=9-

当0<m<3时,AE=-3,PE=m,

S=AE×PE=(-3)×m=m(-3)=9-3m.

综上所述, .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C在半径为9的⊙O上, 弧AB的长为2π , 则∠ACB的大小是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD2BDE为线段AC上一点,CE2AE

(1)AB18BC21,求DE的长;

(2)ABa,求DE的长;(用含a的代数式表示)

(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙OD , 求BCADBD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与双曲线相交于A21)、B两点.

1)求mk的值;

2)不解关于xy的方程组直接写出点B的坐标;

3)直线经过点B吗?请说明理由.

【答案】1m=1k=2;(2)(-1,-2);(3)经过

【解析】试题分析:(1)把A21)分别代入直线与双曲线即可求得结果;

2)根据函数图象的特征写出两个图象的交点坐标即可;

3)把x=1m=1代入即可求得y的值,从而作出判断.

1)把A21)分别代入直线与双曲线的解析式得m=1k=2

2)由题意得B的坐标(-1,-2);

3)当x=1m=1代入y=2×(1)+4×(1)=24=2

所以直线经过点B(1,-2).

考点:反比例函数的性质

点评:反比例函数的性质是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.

型】解答
束】
20

【题目】某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(2)的反比例函数,其图象如图所示(千帕是一种压强单位)

1)写出这个函数的解析式;

2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;

3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.

(1)如图1,直接写出∠A和∠C之间的数量关系________

(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;

(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,他们之间距离为7,AB=6求:弦CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在¨ABCD中,过点DDE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF

1)求证:四边形BFDE是矩形;

2)若CF=3BF=4DF=5,求证:AF平分∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB10AC2BC边上的高AD6,则另一边BC等于_______

【答案】106

【解析】试题解析:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD+CD=8+2=10;

如图2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根据勾股定理得:BD==8,CD==2,

此时BC=BD-CD=8-2=6,

BC的长为6或10.

型】填空
束】
12

【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

同步练习册答案