【题目】已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_____.
【答案】.(3,4)或(2,4)或(8,4).
【解析】
题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.
解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;
(2)OD是等腰三角形的一条腰时:
①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,
在直角△OPC中,CP===3,则P的坐标是(3,4).
②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,
过D作DM⊥BC于点M,
在直角△PDM中,PM==3,
当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);
当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).
故P的坐标为:(3,4)或(2,4)或(8,4).
故答案为:(3,4)或(2,4)或(8,4).
科目:初中数学 来源: 题型:
【题目】把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的( )
A.内部 B.外部 C.边上 D.以上都有可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为lcm/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:
(1)线段AD=___cm;
(2)求证:PB=PQ;
(3)当t为何值时,以P、Q、D、M为顶点的四边形为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是反映一辆出租车从甲地到乙地的速度(千米/时)与时间(分钟)的关系图象;根据图象,回答下列问题:
(1)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?
(2)汽车在哪段时间保持匀速行驶?时速是多少?
(3)出发后25分钟到30分钟之间可能发生了什么情况?
(4)用自己的语言大致描述这辆汽车的行驶情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y﹣2与x成正比例,当x=2时,y=6.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)此函数图象与x轴交于点A,与y轴交于点B,点C在x轴上,若S△ABC=3,请直接写出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是CD边上一动点,DF⊥BE交BE的延长线于F.
(1)如图(1),若BE平分∠DBC时,
①直接写出∠FDC的度数;
②延长DF交BC的延长线于点H,补全图形,探究BE与DF的数量关系,并证明你的结论;
(2)如图(2),过点C作CG⊥BE于点G,猜想线段BF,CG,DF之间的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在△ABC中,∠C=60°,∠A=40°.
(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);
(2)求证:BD平分∠CBA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com