精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx﹣3的图象与x轴交于B,C两点(点B在点C的左侧),一次函数y=mx+n的图象经过点B(﹣2,0)和二次函数图象上另一点A(4,3),若点M在直线AB上,且与点A的距离是它到x轴的距离的倍,则点M的坐标_____

【答案】(2,2)或(10,6).

【解析】

将B,A两点的坐标代入y=mx+n,运用待定系数法求出一次函数的解析式,可设点M的坐标为(p,p+1),由点M与点A的距离是它到x轴距离的倍,列出关于p的方程,解方程即可.

B(-2,0),A(4,3)代入y=mx+n,

解得:
∴一次函数解析式为y=x+1,
设点M的坐标为(p,p+1),
由题意,得
化简整理,得p2-12p+20=0,
解得p=210,
p=2时,p+1=×2+1=2;
p=10时,p+1=×10+1=6.
故所求点M的坐标为(2,2)或(10,6),
故答案为:(2,2)或(10,6).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:

1)(a2b2ab2b3)÷b﹣(a+b)(ab),其中a1b=﹣2

2)先化简(1+)÷,再从﹣10123中选取一个合适的数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD,BAD,ADC 的平分线AE,DE相交于点E.

(1)证明:AEDE;

(2)如图2,过点E作直线AB,AD,DC的垂线,垂足分别为F,G,H,证明:EF=EG=EH;

(3)如图3,过点E的直线与AB,DC分别相交于点B,C(BCAD的同侧)

①求证: E为线段BC的中点;

②若SADE=8, SABE=2,求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:(要求保留作图痕迹,不写作法)

1)作△ABCBC边上的垂直平分线EF(交AC于点E,交BC于点F);

2)连结BE,若AC=10AB=6,求△ABE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(0,8)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.

(1)若AB∥x轴,求t的值;

(2)当t=6时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;

(3)在(2)的条件下,在x轴上是否存在点D,使O、A、B、D为顶点的四边形面积是104?如果存在,请求出点D的坐标,如果不存在,请说明理由;

(4)设点A关于x轴的对称点为A,连接AB,在点P运动的过程中∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽ABxm,面积为Sm2

1)求Sx的函数关系式;

2)如果要围成面积为45m2的花圃,AB的长是多少米?

3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地之间的铁路交通设有特快列车和普通快车两种车次,某天一辆普通快车从甲地出发匀速向乙地行驶,同时另一辆特快列车从乙地出发匀速向甲地行驶,两车离甲地的路程S(千米)与行驶时间t(时)之间的函数关系如图所示.

(1)甲地到乙地的路成为________千米,普通快车到达乙地所用时间为_______小时.

(2)求特快列车离甲地的路程s与t之间的函数关系式.

(3)在甲、乙两地之间有一座铁路桥,特快列车到铁路桥后又行驶0.5小时与普通快车相遇,求甲地与铁路桥之间的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠MPN,依照下列步骤进行尺规作图:

1)在射线PN上截取线段PA

2)分别以PA为圆心,大于PA的长为半径作弧,两弧相交于EF两点;

3)作直线EF,交射线PM于点B

4)在射线AN上截取ACPB

5)连接BC.

则∠BCP与∠MPN之间的数量关系是_______________________.

查看答案和解析>>

同步练习册答案