【题目】设、、为实数,且,抛物线与轴交于、两点,与轴交于点,且抛物线的顶点在直线上.若是直角三角形,则面积的最大值是( ).
A.1B.
C.2D.3
【答案】A
【解析】
先根据已知条件设出抛物线与x轴的交点,由射影定理的逆定理可求出c2=(x1)x2=x1x2,由根与系数的关系及抛物线的顶点坐标可求出4a=4+b2,且a≥1,再由三角形的面积公式及a的取值范围可求出其最大面积.
设y=ax2+bx+c交y轴于点C(0,c),c≠0,交x轴于点A(x1,0)、B(x2,0),且x1<0<x2,
由△ABC是直角三角形知,点C必为直角顶点,且c2=(x1)x2=x1x2(射影定理的逆定理),
由根与系数的关系得,x1+x2=,x1x2=,
所以c2=,c=,
又=1,即4a=4+b2,且a≥1,
所以S△ABC=|c||x1x2|= (x1+x2)24x1x2,
=,
=≤1,
当且仅当a=1,b=0,c=1时等号成立,因此,Rt△ABC的最大面积是1.
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在同一平面内,将△ABC绕A点逆时针旋转到△ADE的位置.若AC⊥DE,∠ABD=62°,则∠ACB的度数为( )
A.56°B.44°C.34°D.40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,在内有三个正方形,且这三个正方形都有一边在上,都有一个顶点在上,点在上,第一个正方形边长,第二个正方形边长,那么第三个正方形的边长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为且∠AFG=60°,GE=2BG,则折痕EF的长为( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b)x+c=0的一个根;(4)当<x<3时,ax2+(b)x+c>0.其中正确的个数为( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品每天的销售利润(元)与销售单价(元)之间满足关系:,其图像如图所示.
(1)销售单价为多少元时,这种商品每天的销售利润最大?最大利润为多少元?
(2)若该商品每天的销售利润不低于12元,则销售单价的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF,
(1)如图1,请直接给出线段MD、MF的数量及位置关系是 ;
(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;
(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等腰三角形,顶角∠BAC=(<600),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE、BE、DF
(1)求证:BE=CD
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com