【题目】如图所示是二次函数y=ax2+bx+c的图象.下列结论:①二次三项式ax2+bx+c的最大值为4;②使y≤3成立的x的取值范围是x≤-2;③一元二次方程ax2+bx+c=1的两根之和为-1;④该抛物线的对称轴是直线x=-1;⑤4a-2b+c<0.其中正确的结论有______________.(把所有正确结论的序号都填在横线上)
【答案】①④.
【解析】
①由抛物线的顶点坐标为(-1,4),可得出①正确;②由当x=0或x=-2时,y=3,结合抛物线的开口向下,即可得出使y≤3成立的x的取值范围是x≥0或x≤-2,②正确;③由抛物线的对称轴为直线x=-1,可得出一元二次方程ax2+bx+c=1的两根之和为-2,③错误;④根据图象可知,该抛物线的对称轴是直线x=-1,④正确.⑤由x=-2时,,可得出,⑤错误,综上即可得出结论.
①∵抛物线y=ax2+bx+c的顶点坐标为(1,4),
∴二次三项式ax2+bx+c的最大值为4,①正确;
②∵当x=0时,y=3,
∴当x=2时,y=3.
观察函数图象,可知:当x≥0或x≤-2,y≤3, ②错误;
③∵抛物线的对称轴为直线x=1,
∴一元二次方程ax2+bx+c=1的两根之和为2,③错误;
④抛物线的对称轴为直线x=1,④正确.
⑤∵时,,
∴,⑤错误.
综上所述:正确的结论为①④.
故答案为:①④.
科目:初中数学 来源: 题型:
【题目】河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A. 中位数是12.7% B. 众数是15.3%
C. 平均数是15.98% D. 方差是0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE
(1)求证:四边形BPEQ是菱形:
(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.
(1)求∠ADB的度数;
(2)若DE⊥AC于点E,求∠ADE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=(x﹣3)2与x轴交于A、B两点(点A在B的左侧),与y轴交于C点,顶点D.
(1)求点A、B、D三点的坐标;
(2)连结CD交x轴于G,过原点O作OE⊥CD,垂足为H,交抛物线对称轴于E,求出E点的纵坐标;
(3)以②中点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;
(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;
(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在方格纸中,已知格点△ABC和格点O.
(1)画出△ABC关于点O对称的△A1B1C1;
(2)画出△ABC绕点O顺时针旋转90°的△A2B2C2 ;
(3)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com