【题目】某网店3月份经营一种热销商品,每件成本20元,发现三周内售价在持续提升,销售单价P(元/件)与时间t(天)之间的函数关系为P=30+ t(其中1≤t≤21,t为整数),且其日销售量y(件)与时间t(天)的关系如下表
时间t(天) | 1 | 5 | 9 | 13 | 17 | 21 |
日销售量y(件) | 118 | 110 | 102 | 94 | 86 | 78 |
(1)已知y与t之间的变化规律符合一次函数关系,请直接写出y(件)与时间t(天)函数关系式;
(2)在这三周的销售中,第几天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的21天中,该网店每销售一件商品就捐赠a元利润(a<8)给“精准扶贫”的对象,通过销售记录发现,这21天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
【答案】
(1)解:设y(件)与时间t(天)函数关系式是y=kt+b,
,得 ,
即y(件)与时间t(天)函数关系式是y=﹣2t+120;
(2)解:设日销售利润为w元,
w=(30+ t﹣20)(﹣2t+120)= ,
∴当t=10时,w取得最大值,此时w=1250,
答:第10天的销售利润最大,最大利润是1250元;
(3)解:设捐赠后的每日的销售利润为w1元,
w1=(30+ t﹣20﹣a)(﹣2t+120)= ,
∴w1的对称轴是t= =2a+10,
∵这21天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,
∴2a+10≥21,
解得,a≥5.5,
又∵a<8,
∴5.5≤a<8,
即a的取值范围是5.5≤a<8.
【解析】(1)根据题意可以设出y(件)与时间t(天)函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以得到利润与t的函数关系式,然后化为顶点式即可解答本题;(3)根据题意可以得到相应的函数解析式,然后根据二次函数的性质即可解答本题.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣x2+bx+c(其中b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标.
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.
(3)沿直线AC方向平移该二次函数图象,使得CM与平移前的CB相等,求平移后点M的坐标.
(4)点P是直线AC上的动点,过点P作直线AC的垂线PQ,记点M关于直线PQ的对称点为M′.当以点P,A,M,M′为顶点的四边形为平行四边形时,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,
(1)求证:△ABF≌△ECF;
(2)若AE=AD,连接AC、BE,求证:四边形ABEC是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图一,现有足够多的边长为的小正方形纸片(类)、长为宽为的长方形纸片(类)以及边长为的大正方形纸片(类).
如图二,小明利用上述三种纸片各若干张,拼出了一个长为,宽为的长方形,并用这个长方形解释了等式是成立的.
(1)若取图一中的纸片若干张(三种都要取到)拼成一个长方形(所取纸片用完无剩余),使它的长和宽分别为,请你通过计算说明需要类卡片多少张;
(2)若取类纸片张,类纸片张,类纸片张,能拼成一个长方形吗(所取纸片用完无剩余)?请你在图三中画出示意图并在下面直接写出能用该长方形来解释成立的等式;
(3)如图四,大正方形的边长为,小正方形的边长为,用四个完全相同的长方形的长和宽为别为.请你通过观察或计算,判断下列个式子是否成立,将其中成立的式子的都填写在横线上: (直接填写序号).
①;
②;
③;
④.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.
(1)求抛物线的解析式;
(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,要得到△ABD≌△ACE,从下列条件中补选一个,则错误的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/小时)情况,则下列关于车速描述错误的是( )
A. 平均数是23 B. 中位数是25 C. 众数是30 D. 方差是129
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com