精英家教网 > 初中数学 > 题目详情

【题目】如图的平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A.B.C.D.E、F中,会过点(45,2)的是点  ▲  

【答案】B。

解析分类归纳(图形的变化类),坐标与图形性质,正多边形和圆,旋转的性质。

正六边形滚动一周等于6。如图所示。

当正六边形ABCDEF滚动到位置1,2,3,4,5,6,7时,顶点A.B.C.D.E、F的纵坐标为2。

位置1时,点A的横坐标也为2。

(45-2)÷6=7…1,

恰好滚动7周多一个,即与位置2顶点的纵坐标相同,此点是点B。

会过点(45,2)的是点B。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)与y轴交于点C(0,2),抛物线的对称轴交x轴于点D.

(1)求抛物线的表达式;
(2)在抛物线的对称轴是否存在点P,使△PCD是以CD为腰的等腰三角形,如果存在,求出P点的坐标,若不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?并求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)证明:PE=PF;
(3)若PF=13,sinA= ,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是ABCD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为( )

A. 4 B. C. D. 30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6

(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有20箱橘子,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

(1)20箱橘子中,最重的一箱比最轻的一箱多重多少干克?

(2)与标准重量比较,20箱橘子总计超过或不足多少千克?

(3)若橘子每千克售价2.5元,则出售这20箱橘子可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).

(1)求二次函数的解析式并写出D点坐标;
(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国著名数学家华罗庚曾经说过,数形结合百般好,隔裂分家万事非。数形结合的思想方法在数学中应用极为广泛.

观察下列按照一定规律堆砌的钢管的横截面图:

用含n的式子表示第n个图的钢管总数.

分析思路

图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律。

:要解决上面问题,我们不妨先从特例入手:(统一用S表示钢管总数)

解决问题

(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.

S=1+2 S=2+3+4 _____________ ______________

(2)其实,对同一个图形,我们的分析眼光可以是不同的。请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:

_______ ____________ _______________ _______________

(3)用含n的式子列式,并计算第n个图的钢管总数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx+b与x轴正半轴交于点A,与y轴负半轴交于点B,圆心P在x轴的正半轴上,已知AB=10,AP=

(1)求点P到直线AB的距离;

(2)求直线y=kx+b的解析式;

(3)在图中存在点Q,使得BQO=90°,连接AQ,请求出AQ的最小值.

查看答案和解析>>

同步练习册答案