【题目】如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若∠A=30°,AB=8,F是OB的中点,连接DF并延长交⊙O于G,求弦DG的长.
【答案】(1)证明见解析;(2)DG=4.
【解析】
(1)连接OD,只要证明OD⊥DE即可.
(2)连接BD,证得△ODB是等边三角形后即可得到FD=FG,然后在Rt△BDF中选择合理的边角关系求得DF,进而求得DG的长即可.
(1)证明:连接OD.
∵OA=OD,∴∠A=∠1.
∵BA=BC,∴∠A=∠C.
∴∠1=∠C.
∵DE⊥BC,垂足为E,
∴∠2+∠C=90°.
∴∠1+∠2=90°.
∴∠ODE=90°.
∵点D在⊙O上,
∴DE是⊙O的切线.
(2)连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,AB=8,
∴DB=4,∠ABD=60°.
∵OD=OB,
∴△ODB是等边三角形.
∵F是OB的中点,
∴DG⊥AB.
∴FD=FG.
在Rt△BDF中,∠ABD=60°.
∴DF=BDsin60°=2.
∴DG=4.
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.
(1)求证:AD为⊙O切线;
(2)若sin∠BAC=,求tan∠AFO的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:点P在一次函数图象上,点Q在反比例函数图象上,若存在点P与点Q关于原点对称,我们称二次函数为一次函数与反比例函数的“新时代函数”,点P称为“幸福点”。
(1)判断与是否存在“新时代函数”,如果存在,请求出“幸福点”坐标,如果不存在,请说明理由;
(2)若反比例函数与一次函数有两个“幸福点”,和,且,求其“新时代函数”的解析式;
(3)若一次函数和反比例函数在自变量x的值满足的情况下,其“新时代函数”的最小值为3,求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点,按如图方式作正方形,,,…,点,,,…在直线上,点,,,…在轴上,图中阴影部分三角形的面积从左到右依次标记为,,,…,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三个大小一样的正六边形,可按下列方式进行拼接:
方式1:如图1;
方式2:如图2;
若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴相交于点,与轴相交于、两点,且点在点的右侧,设抛物线的顶点为.
(1)若点与点关于直线对称,求的值;
(2)若,求的面积;
(3)当时,该抛物线上最高点与最低点纵坐标的差为,求出与的关系;若有最大值或最小值,直接写出这个最大值或最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日游玩的热点景区.张老师对八(1)班学生“五·一”小长假随父母到这三个景区游玩的计划做了全面调查,凋奄分四个类别:A 游三个景区;B 游两个景区;C 游一个景区;D 不到这三个景区游玩.现根据调查结果绘制了不完整饷条形统计图和扇形统计图,请结合图中信息解答下列问题.
(1)八(1)班共有学生 人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为 ;
(2)请将条形统计图补充完整:
(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com