精英家教网 > 初中数学 > 题目详情
如图,是一个规格为8×8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.
考点:坐标确定位置
专题:
分析:首先以A为坐标原点,确定平面直角坐标系,然后再根据每个点的位置,写出点的坐标.
解答:解:如图所示:
以A为坐标原点,B(2,1)、C(6,3)、D(-1,6).
点评:此题主要考查了坐标确定位置,关键是正确建立坐标系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将抛物线y=x2-6x+5向
 
平移
 
个单位,则得到抛物线y=x2-6x+9.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,M、N是平行四边形ABCD对角线BD上两点.
(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;
(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a的值及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB为⊙O的直径,弦CD平分∠ACB,CD交OB于点E.
(1)求证:△DBC∽△DEB;
(2)若DF⊥AC于点F,交AO于点G.
①求证:DF=BC+AF;
②若EG=10,EA=16,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC中,AB=AC=2,BC边上有100个不同的点p1,p2,…p100;记mi=APi2+BPi×PiC(i=1,2,…100)求:m1+m2+…+m100的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.
(1)求这条抛物线的函数关系式;
(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知抛物线y=-
1
2
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,取BC的中点N,连接NP,BQ,试探究
PQ
NP+BQ
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为4
5
,⊙O的两条弦AB⊥CD于点P,BC中点为F,连接FP并延长交AD于E.
(1)求证:EF⊥AD;
(2)若AB=16,OP=2
13
,求弦CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

一种细菌半径是0.000047米,用科学记数法表示为
 

查看答案和解析>>

同步练习册答案